Fractional Kolmogorov Equations with Singular Paracontrolled Terminal Conditions.

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Journal of Theoretical Probability Pub Date : 2025-01-01 Epub Date: 2025-03-06 DOI:10.1007/s10959-025-01408-x
Helena Kremp, Nicolas Perkowski
{"title":"Fractional Kolmogorov Equations with Singular Paracontrolled Terminal Conditions.","authors":"Helena Kremp, Nicolas Perkowski","doi":"10.1007/s10959-025-01408-x","DOIUrl":null,"url":null,"abstract":"<p><p>We consider backward fractional Kolmogorov equations with singular Besov drift of low regularity and singular terminal conditions. To treat drifts beyond the so-called Young regime, we assume an enhancement assumption on the drift and consider paracontrolled terminal conditions. Our work generalizes previous results on the equation from Cannizzaro and Chouk (Ann Probab 46:1710-1763, 2018), Kremp and Perkowski (Bernoulli 28:1757-1783, 2022. 10.3150/21-BEJ1394) to the case of <i>singular paracontrolled terminal conditions</i> and simultaneously treats singular and non-singular data in one concise solution theory. We introduce a paracontrolled solution space that implies parabolic time and space regularity on the solution without introducing the so-called modified paraproduct from Gubinelli and Perkowski (Commun Math Phys 349:165-269, 2017). The tools developed in this article apply for general linear PDEs that can be tackled with the paracontrolled ansatz.</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"38 2","pages":"39"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-025-01408-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider backward fractional Kolmogorov equations with singular Besov drift of low regularity and singular terminal conditions. To treat drifts beyond the so-called Young regime, we assume an enhancement assumption on the drift and consider paracontrolled terminal conditions. Our work generalizes previous results on the equation from Cannizzaro and Chouk (Ann Probab 46:1710-1763, 2018), Kremp and Perkowski (Bernoulli 28:1757-1783, 2022. 10.3150/21-BEJ1394) to the case of singular paracontrolled terminal conditions and simultaneously treats singular and non-singular data in one concise solution theory. We introduce a paracontrolled solution space that implies parabolic time and space regularity on the solution without introducing the so-called modified paraproduct from Gubinelli and Perkowski (Commun Math Phys 349:165-269, 2017). The tools developed in this article apply for general linear PDEs that can be tackled with the paracontrolled ansatz.

具有奇异傍控终端条件的分数阶Kolmogorov方程。
考虑具有低正则性奇异Besov漂移和奇异终端条件的后向分数阶Kolmogorov方程。为了处理超出所谓杨氏状态的漂移,我们对漂移进行增强假设,并考虑副控制终端条件。我们的工作推广了canizzaro和Chouk (Ann Probab 46:1710-1763, 2018), Kremp和Perkowski (Bernoulli 28:1757-1783, 2022)对方程的先前结果。10.3150/21-BEJ1394)在奇异副控终端条件的情况下,同时在一个简洁的解理论中处理奇异和非奇异数据。我们在不引入Gubinelli和Perkowski所谓的修正副积(common Math Phys 349:165-269, 2017)的情况下,引入了一个副控制解空间,该解空间暗示了解上的抛物时间和空间规律性。本文开发的工具适用于一般的线性偏微分方程,这些偏微分方程可以用副控制分析来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信