Construction and Test of the 19.6-T Solid-Nitrogen-Cooled REBCO Insert Magnet for the MIT 1.3-GHz NMR System.

IF 3.7 1区 物理与天体物理 Q2 PHYSICS, APPLIED
Superconductor Science & Technology Pub Date : 2025-03-01 Epub Date: 2025-02-20
Fangliang Dong, Dongkeun Park, Patricia Sadde, Juan Bascuñán, Yukikazu Iwasa
{"title":"Construction and Test of the 19.6-T Solid-Nitrogen-Cooled REBCO Insert Magnet for the MIT 1.3-GHz NMR System.","authors":"Fangliang Dong, Dongkeun Park, Patricia Sadde, Juan Bascuñán, Yukikazu Iwasa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents the construction, testing, and analyses work of the 835-MHz high-temperature superconducting REBCO insert magnet (H835), a critical component of the ongoing MIT 1.3-GHz HTS/LTS NMR Magnet project (1.3G). H835 consists of 40 double-pancake coils operating in a solid nitrogen environment at temperatures ranging from 4 to 17 K. It is designed to generate a central magnetic field of 19.6 T within a 79.4-mm clear bore that will house a 54-mm standard warm bore in the future 1.3-GHz NMR system. Building on lessons learned from our previous 18.8-T REBCO insert magnet (H800), which experienced quenching in 2018 that resulted in permanent damage, several improvements have been implemented in this new H835 design and construction. We have charged H835 to the rated current of 230 A and maintained its central field of 19.43 T for over 15 hours without any issues before ramping down the current. The 0.17-T (0.87%) error field between measurement and design was due to screening current effect. H835 will be combined with the low-temperature superconducting 500-MHz background magnet (L500) to complete 1.3G. We believe that this solid-nitrogen-cooled H835 can provide valuable insights for developing high-field liquid-helium-free REBCO magnets.</p>","PeriodicalId":54440,"journal":{"name":"Superconductor Science & Technology","volume":"38 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science & Technology","FirstCategoryId":"101","ListUrlMain":"","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the construction, testing, and analyses work of the 835-MHz high-temperature superconducting REBCO insert magnet (H835), a critical component of the ongoing MIT 1.3-GHz HTS/LTS NMR Magnet project (1.3G). H835 consists of 40 double-pancake coils operating in a solid nitrogen environment at temperatures ranging from 4 to 17 K. It is designed to generate a central magnetic field of 19.6 T within a 79.4-mm clear bore that will house a 54-mm standard warm bore in the future 1.3-GHz NMR system. Building on lessons learned from our previous 18.8-T REBCO insert magnet (H800), which experienced quenching in 2018 that resulted in permanent damage, several improvements have been implemented in this new H835 design and construction. We have charged H835 to the rated current of 230 A and maintained its central field of 19.43 T for over 15 hours without any issues before ramping down the current. The 0.17-T (0.87%) error field between measurement and design was due to screening current effect. H835 will be combined with the low-temperature superconducting 500-MHz background magnet (L500) to complete 1.3G. We believe that this solid-nitrogen-cooled H835 can provide valuable insights for developing high-field liquid-helium-free REBCO magnets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Superconductor Science & Technology
Superconductor Science & Technology 物理-物理:凝聚态物理
CiteScore
6.80
自引率
27.80%
发文量
227
审稿时长
3 months
期刊介绍: Superconductor Science and Technology is a multidisciplinary journal for papers on all aspects of superconductivity. The coverage includes theories of superconductivity, the basic physics of superconductors, the relation of microstructure and growth to superconducting properties, the theory of novel devices, and the fabrication and properties of thin films and devices. It also encompasses the manufacture and properties of conductors, and their application in the construction of magnets and heavy current machines, together with enabling technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信