{"title":"Optimized hybrid SVM-RF multi-biometric framework for enhanced authentication using fingerprint, iris, and face recognition.","authors":"Sonal, Ajit Singh, Chander Kant","doi":"10.7717/peerj-cs.2699","DOIUrl":null,"url":null,"abstract":"<p><p>This article introduces a hybrid multi-biometric system incorporating fingerprint, face, and iris recognition to enhance individual authentication. The system addresses limitations of uni-modal approaches by combining multiple biometric modalities, exhibiting superior performance and heightened security in practical scenarios, making it more dependable and resilient for real-world applications. The integration of support vector machine (SVM) and random forest (RF) classifiers, along with optimization techniques like bacterial foraging optimization (BFO) and genetic algorithms (GA), improves efficiency and robustness. Additionally, integrating feature-level fusion and utilizing methods such as Gabor filters for feature extraction enhances overall performance of the model. The system demonstrates superior accuracy and reliability, making it suitable for real-world applications requiring secure and dependable identification solutions.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2699"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2699","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces a hybrid multi-biometric system incorporating fingerprint, face, and iris recognition to enhance individual authentication. The system addresses limitations of uni-modal approaches by combining multiple biometric modalities, exhibiting superior performance and heightened security in practical scenarios, making it more dependable and resilient for real-world applications. The integration of support vector machine (SVM) and random forest (RF) classifiers, along with optimization techniques like bacterial foraging optimization (BFO) and genetic algorithms (GA), improves efficiency and robustness. Additionally, integrating feature-level fusion and utilizing methods such as Gabor filters for feature extraction enhances overall performance of the model. The system demonstrates superior accuracy and reliability, making it suitable for real-world applications requiring secure and dependable identification solutions.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.