Non-invasive enhanced hypertension detection through ballistocardiograph signals with Mamba model.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2711
Adi Alhudhaif, Kemal Polat
{"title":"Non-invasive enhanced hypertension detection through ballistocardiograph signals with Mamba model.","authors":"Adi Alhudhaif, Kemal Polat","doi":"10.7717/peerj-cs.2711","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores using ballistocardiography (BCG), a non-invasive cardiovascular monitoring technique, combined with advanced machine learning and deep learning models for hypertension detection. The motivation behind this research is to develop a non-invasive and efficient approach for long-term hypertension monitoring, facilitating home-based health assessments. A dataset of 128 BCG recordings has been used, capturing body micro-vibrations from cardiac activity. Various classification models, including Mamba Classifier, Transformer, Stacking, Voting, and XGBoost, were applied to differentiate hypertensive individuals from normotensive ones. In this study, integrating BCG signals with deep learning and machine learning models for hypertension detection is distinguished from previous literature by employing the Mamba deep learning architecture and Transformer-based models. Unlike conventional methods in literature, this study enables more effective analysis of time-series data with the Mamba architecture, capturing long-term signal dependencies and achieving higher accuracy rates. In particular, the combined use of Mamba architecture and the Transformer model's signal processing capabilities represents a novel approach not previously seen in the literature. While existing studies on BCG signals typically rely on traditional machine learning algorithms, this study aims to achieve higher success rates in hypertension detection by integrating signal processing and deep learning stages. The Mamba Classifier outperformed other models, achieving an accuracy of 95.14% and an AUC of 0.9922 in the 25% hold-out validation. Transformer and Stacking models also demonstrated strong performance, while the Voting and XGBoost models showed comparatively lower results. When combined with artificial intelligence techniques, the findings indicate the potential of BCG signals in providing non-invasive, long-term hypertension detection. The results suggest that the Mamba Classifier is the most effective model for this dataset. This research underscores the potential of BCG technology for continuous home-based health monitoring, providing a feasible alternative to traditional methods. Future research should aim to validate these findings with larger datasets and explore the clinical applications of BCG for cardiovascular disease monitoring.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2711"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2711","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores using ballistocardiography (BCG), a non-invasive cardiovascular monitoring technique, combined with advanced machine learning and deep learning models for hypertension detection. The motivation behind this research is to develop a non-invasive and efficient approach for long-term hypertension monitoring, facilitating home-based health assessments. A dataset of 128 BCG recordings has been used, capturing body micro-vibrations from cardiac activity. Various classification models, including Mamba Classifier, Transformer, Stacking, Voting, and XGBoost, were applied to differentiate hypertensive individuals from normotensive ones. In this study, integrating BCG signals with deep learning and machine learning models for hypertension detection is distinguished from previous literature by employing the Mamba deep learning architecture and Transformer-based models. Unlike conventional methods in literature, this study enables more effective analysis of time-series data with the Mamba architecture, capturing long-term signal dependencies and achieving higher accuracy rates. In particular, the combined use of Mamba architecture and the Transformer model's signal processing capabilities represents a novel approach not previously seen in the literature. While existing studies on BCG signals typically rely on traditional machine learning algorithms, this study aims to achieve higher success rates in hypertension detection by integrating signal processing and deep learning stages. The Mamba Classifier outperformed other models, achieving an accuracy of 95.14% and an AUC of 0.9922 in the 25% hold-out validation. Transformer and Stacking models also demonstrated strong performance, while the Voting and XGBoost models showed comparatively lower results. When combined with artificial intelligence techniques, the findings indicate the potential of BCG signals in providing non-invasive, long-term hypertension detection. The results suggest that the Mamba Classifier is the most effective model for this dataset. This research underscores the potential of BCG technology for continuous home-based health monitoring, providing a feasible alternative to traditional methods. Future research should aim to validate these findings with larger datasets and explore the clinical applications of BCG for cardiovascular disease monitoring.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信