{"title":"Multi-task snake optimization algorithm for global optimization and planar kinematic arm control problem.","authors":"Qingrui Li, Yongquan Zhou, Qifang Luo","doi":"10.7717/peerj-cs.2688","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-task optimization (MTO) algorithms aim to simultaneously solve multiple optimization tasks. Addressing issues such as limited optimization precision and high computational costs in existing MTO algorithms, this article proposes a multi-task snake optimization (MTSO) algorithm. The MTSO algorithm operates in two phases: first, independently handling each optimization problem; second, transferring knowledge. Knowledge transfer is determined by the probability of knowledge transfer and the selection probability of elite individuals. Based on this decision, the algorithm either transfers elite knowledge from other tasks or updates the current task through self-perturbation. Experimental results indicate that, compared to other advanced MTO algorithms, the proposed algorithm achieves the most accurate solutions on multitask benchmark functions, the five-task and 10-task planar kinematic arm control problems, the multitask robot gripper problem, and the multitask car side-impact design problem. The code and data for this article can be obtained from: https://doi.org/10.5281/zenodo.14197420.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2688"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2688","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-task optimization (MTO) algorithms aim to simultaneously solve multiple optimization tasks. Addressing issues such as limited optimization precision and high computational costs in existing MTO algorithms, this article proposes a multi-task snake optimization (MTSO) algorithm. The MTSO algorithm operates in two phases: first, independently handling each optimization problem; second, transferring knowledge. Knowledge transfer is determined by the probability of knowledge transfer and the selection probability of elite individuals. Based on this decision, the algorithm either transfers elite knowledge from other tasks or updates the current task through self-perturbation. Experimental results indicate that, compared to other advanced MTO algorithms, the proposed algorithm achieves the most accurate solutions on multitask benchmark functions, the five-task and 10-task planar kinematic arm control problems, the multitask robot gripper problem, and the multitask car side-impact design problem. The code and data for this article can be obtained from: https://doi.org/10.5281/zenodo.14197420.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.