MFI-Net: multi-level feature invertible network image concealment technique.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2668
Dapeng Cheng, Minghui Zhu, Bo Yang, Xiaolian Gao, Wanting Jing, Yanyan Mao, Feng Zhao
{"title":"MFI-Net: multi-level feature invertible network image concealment technique.","authors":"Dapeng Cheng, Minghui Zhu, Bo Yang, Xiaolian Gao, Wanting Jing, Yanyan Mao, Feng Zhao","doi":"10.7717/peerj-cs.2668","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of deep learning and invertible networks for image hiding has been proven effective and secure. These methods can conceal large amounts of information while maintaining high image quality and security. However, existing methods often lack precision in selecting the hidden regions and primarily rely on residual structures. They also fail to fully exploit low-level features, such as edges and textures. These issues lead to reduced quality in model generation results, a heightened risk of network overfitting, and diminished generalization capability. In this article, we propose a novel image hiding method based on invertible networks, called MFI-Net. The method introduces a new upsampling convolution block (UCB) and combines it with a residual dense block that employs the parametric rectified linear unit (PReLU) activation function, effectively utilizing multi-level information (low-level and high-level features) of the image. Additionally, a novel frequency domain loss (FDL) is introduced, which constrains the secret information to be hidden in regions of the cover image that are more suitable for concealing the data. Extensive experiments on the DIV2K, COCO, and ImageNet datasets demonstrate that MFI-Net consistently outperforms state-of-the-art methods, achieving superior image quality metrics. Furthermore, we apply the proposed method to digital collection images, achieving significant success.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2668"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2668","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of deep learning and invertible networks for image hiding has been proven effective and secure. These methods can conceal large amounts of information while maintaining high image quality and security. However, existing methods often lack precision in selecting the hidden regions and primarily rely on residual structures. They also fail to fully exploit low-level features, such as edges and textures. These issues lead to reduced quality in model generation results, a heightened risk of network overfitting, and diminished generalization capability. In this article, we propose a novel image hiding method based on invertible networks, called MFI-Net. The method introduces a new upsampling convolution block (UCB) and combines it with a residual dense block that employs the parametric rectified linear unit (PReLU) activation function, effectively utilizing multi-level information (low-level and high-level features) of the image. Additionally, a novel frequency domain loss (FDL) is introduced, which constrains the secret information to be hidden in regions of the cover image that are more suitable for concealing the data. Extensive experiments on the DIV2K, COCO, and ImageNet datasets demonstrate that MFI-Net consistently outperforms state-of-the-art methods, achieving superior image quality metrics. Furthermore, we apply the proposed method to digital collection images, achieving significant success.

MFI-Net:多级特征可逆网络图像隐藏技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信