A quality assessment algorithm for no-reference images based on transfer learning.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2654
Yang Yang, Chang Liu, Hui Wu, Dingguo Yu
{"title":"A quality assessment algorithm for no-reference images based on transfer learning.","authors":"Yang Yang, Chang Liu, Hui Wu, Dingguo Yu","doi":"10.7717/peerj-cs.2654","DOIUrl":null,"url":null,"abstract":"<p><p>Image quality assessment (IQA) plays a critical role in automatically detecting and correcting defects in images, thereby enhancing the overall performance of image processing and transmission systems. While research on reference-based IQA is well-established, studies on no-reference image IQA remain underdeveloped. In this article, we propose a novel no-reference IQA algorithm based on transfer learning (IQA-NRTL). This algorithm leverages a deep convolutional neural network (CNN) due to its ability to effectively capture multi-scale semantic information features, which are essential for representing the complex visual perception in images. These features are extracted through a visual perception module. Subsequently, an adaptive fusion network integrates these features, and a fully connected regression network correlates the fused semantic information with global semantic information to perform the final quality assessment. Experimental results on authentically distorted datasets (KonIQ-10k, BIQ2021), synthetically distorted datasets (LIVE, TID2013), and an artificial intelligence (AI)-generated content dataset (AGIQA-1K) show that the proposed IQA-NRTL algorithm significantly improves performance compared to mainstream no-reference IQA algorithms, depending on variations in image content and complexity.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2654"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2654","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Image quality assessment (IQA) plays a critical role in automatically detecting and correcting defects in images, thereby enhancing the overall performance of image processing and transmission systems. While research on reference-based IQA is well-established, studies on no-reference image IQA remain underdeveloped. In this article, we propose a novel no-reference IQA algorithm based on transfer learning (IQA-NRTL). This algorithm leverages a deep convolutional neural network (CNN) due to its ability to effectively capture multi-scale semantic information features, which are essential for representing the complex visual perception in images. These features are extracted through a visual perception module. Subsequently, an adaptive fusion network integrates these features, and a fully connected regression network correlates the fused semantic information with global semantic information to perform the final quality assessment. Experimental results on authentically distorted datasets (KonIQ-10k, BIQ2021), synthetically distorted datasets (LIVE, TID2013), and an artificial intelligence (AI)-generated content dataset (AGIQA-1K) show that the proposed IQA-NRTL algorithm significantly improves performance compared to mainstream no-reference IQA algorithms, depending on variations in image content and complexity.

一种基于迁移学习的无参考图像质量评估算法。
图像质量评估(IQA)在自动检测和纠正图像缺陷,从而提高图像处理和传输系统的整体性能方面起着至关重要的作用。基于参考图像的IQA研究已经相当成熟,而无参考图像的IQA研究还不发达。本文提出了一种基于迁移学习的无参考IQA算法(IQA- nrtl)。该算法利用深度卷积神经网络(CNN),因为它能够有效地捕获多尺度语义信息特征,这对于表示图像中的复杂视觉感知至关重要。这些特征是通过视觉感知模块提取出来的。随后,一个自适应融合网络将这些特征整合在一起,一个全连接回归网络将融合的语义信息与全局语义信息关联起来,进行最终的质量评估。在真实失真数据集(KonIQ-10k、BIQ2021)、综合失真数据集(LIVE、TID2013)和人工智能生成的内容数据集(AGIQA-1K)上的实验结果表明,根据图像内容和复杂性的变化,所提出的IQA- nrtl算法比主流无参考IQA算法的性能有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信