Muhammad Abdullah Shah Bukhari, Faisal Bukhari, Muhammad Asif, Hanan Aljuaid, Waheed Iqbal
{"title":"A multi-scale CNN with atrous spatial pyramid pooling for enhanced chest-based disease detection.","authors":"Muhammad Abdullah Shah Bukhari, Faisal Bukhari, Muhammad Asif, Hanan Aljuaid, Waheed Iqbal","doi":"10.7717/peerj-cs.2686","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a sophisticated deep-learning model designed for the early detection of COVID-19 and pneumonia. The model employs a convolutional neural network-integrated with atrous spatial pyramid pooling. The atrous spatial pyramid pooling mechanism enhances the convolutional neural network model's ability to capture fine and large-scale features, optimizing detection accuracy in chest X-ray images. This improvement, along with transfer learning, significantly enhances the overall performance. By utilizing data augmentation to address the scarcity of available X-ray images, our atrous spatial pyramid pooling-enhanced convolutional neural network achieved a validation accuracy of 98.66% for COVID-19 and 83.75% for pneumonia, which beats the validation results of the other state of the art approaches (the metrics used for evaluation were accuracy, precision, F1-score, recall, specificity, and area under the curve). The model's multi-branch architecture facilitates more accurate and adaptable disease prediction, thereby increasing diagnostic precision and robustness. This approach offers the potential for faster and more reliable diagnoses of chest-related conditions.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2686"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2686","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a sophisticated deep-learning model designed for the early detection of COVID-19 and pneumonia. The model employs a convolutional neural network-integrated with atrous spatial pyramid pooling. The atrous spatial pyramid pooling mechanism enhances the convolutional neural network model's ability to capture fine and large-scale features, optimizing detection accuracy in chest X-ray images. This improvement, along with transfer learning, significantly enhances the overall performance. By utilizing data augmentation to address the scarcity of available X-ray images, our atrous spatial pyramid pooling-enhanced convolutional neural network achieved a validation accuracy of 98.66% for COVID-19 and 83.75% for pneumonia, which beats the validation results of the other state of the art approaches (the metrics used for evaluation were accuracy, precision, F1-score, recall, specificity, and area under the curve). The model's multi-branch architecture facilitates more accurate and adaptable disease prediction, thereby increasing diagnostic precision and robustness. This approach offers the potential for faster and more reliable diagnoses of chest-related conditions.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.