Review of models for estimating 3D human pose using deep learning.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2574
Sani Salisu, Kamaluddeen Usman Danyaro, Maged Nasser, Israa M Hayder, Hussain A Younis
{"title":"Review of models for estimating 3D human pose using deep learning.","authors":"Sani Salisu, Kamaluddeen Usman Danyaro, Maged Nasser, Israa M Hayder, Hussain A Younis","doi":"10.7717/peerj-cs.2574","DOIUrl":null,"url":null,"abstract":"<p><p>Human pose estimation (HPE) is designed to detect and localize various parts of the human body and represent them as a kinematic structure based on input data like images and videos. Three-dimensional (3D) HPE involves determining the positions of articulated joints in 3D space. Given its wide-ranging applications, HPE has become one of the fastest-growing areas in computer vision and artificial intelligence. This review highlights the latest advances in 3D deep-learning-based HPE models, addressing the major challenges such as accuracy, real-time performance, and data constraints. We assess the most widely used datasets and evaluation metrics, providing a comparison of leading algorithms in terms of precision and computational efficiency in tabular form. The review identifies key applications of HPE in industries like healthcare, security, and entertainment. Our findings suggest that while deep learning models have made significant strides, challenges in handling occlusion, real-time estimation, and generalization remain. This study also outlines future research directions, offering a roadmap for both new and experienced researchers to further develop 3D HPE models using deep learning.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2574"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2574","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human pose estimation (HPE) is designed to detect and localize various parts of the human body and represent them as a kinematic structure based on input data like images and videos. Three-dimensional (3D) HPE involves determining the positions of articulated joints in 3D space. Given its wide-ranging applications, HPE has become one of the fastest-growing areas in computer vision and artificial intelligence. This review highlights the latest advances in 3D deep-learning-based HPE models, addressing the major challenges such as accuracy, real-time performance, and data constraints. We assess the most widely used datasets and evaluation metrics, providing a comparison of leading algorithms in terms of precision and computational efficiency in tabular form. The review identifies key applications of HPE in industries like healthcare, security, and entertainment. Our findings suggest that while deep learning models have made significant strides, challenges in handling occlusion, real-time estimation, and generalization remain. This study also outlines future research directions, offering a roadmap for both new and experienced researchers to further develop 3D HPE models using deep learning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信