Tonoplast Sugar Transporters Coordinately Regulate Tomato Fruit Development and Quality.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hexu Cai, Mengyao Liang, Xu Qin, Rongrong Dong, Xiaotian Wang, Haijing Wang, Shuai Sun, Xia Cui, Wencai Yang, Ren Li
{"title":"Tonoplast Sugar Transporters Coordinately Regulate Tomato Fruit Development and Quality.","authors":"Hexu Cai, Mengyao Liang, Xu Qin, Rongrong Dong, Xiaotian Wang, Haijing Wang, Shuai Sun, Xia Cui, Wencai Yang, Ren Li","doi":"10.1016/j.xplc.2025.101314","DOIUrl":null,"url":null,"abstract":"<p><p>Fruit yield and quality are antagonistically regulated traits in tomato. An excessive focus on increasing yield often leads to a decline in quality. How to achieve the delicate balance between high yield and desirable fruit quality is still a big challenge. In this study, we discovered that disrupting the function of tomato tonoplast sugar transporter 3a (TST3a) can significantly enhance both fruit weight and flavor. In tomato, there are three TSTs, namely SlTST1, SlTST3a and SlTST3b, which possess same sugar transport specificity for fructose and glucose and redundantly control cell expansion during fruit development. The different levels of sugar accumulation in the sltst mutants significantly associated with the fruit size and flavor. The reason for the enlarged fruits of sltst3a mutants, which are a consequence of sugar accumulation, is the increased abundance of SlTST1 at the tonoplast and coupled with the highest sugar transport capacity of SlTST1. Further studies established that SlTST3a prevented the localization of SlTST1 to the tonoplast by inhibiting its interaction with VH1-interacting kinase (SlVIK). Mutation of SlTST3a in the cultivated tomatoes can simultaneously enhance tomato fruit size and sugar content. Our findings present potential avenues for simultaneously improving both fruit quality and yield and provide valuable insights into the mechanisms underlying the storage sugar for fruit development.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101314"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101314","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fruit yield and quality are antagonistically regulated traits in tomato. An excessive focus on increasing yield often leads to a decline in quality. How to achieve the delicate balance between high yield and desirable fruit quality is still a big challenge. In this study, we discovered that disrupting the function of tomato tonoplast sugar transporter 3a (TST3a) can significantly enhance both fruit weight and flavor. In tomato, there are three TSTs, namely SlTST1, SlTST3a and SlTST3b, which possess same sugar transport specificity for fructose and glucose and redundantly control cell expansion during fruit development. The different levels of sugar accumulation in the sltst mutants significantly associated with the fruit size and flavor. The reason for the enlarged fruits of sltst3a mutants, which are a consequence of sugar accumulation, is the increased abundance of SlTST1 at the tonoplast and coupled with the highest sugar transport capacity of SlTST1. Further studies established that SlTST3a prevented the localization of SlTST1 to the tonoplast by inhibiting its interaction with VH1-interacting kinase (SlVIK). Mutation of SlTST3a in the cultivated tomatoes can simultaneously enhance tomato fruit size and sugar content. Our findings present potential avenues for simultaneously improving both fruit quality and yield and provide valuable insights into the mechanisms underlying the storage sugar for fruit development.

番茄叶绿体糖转运蛋白协调调节果实发育和品质。
番茄果实产量和品质是拮抗调控性状。过分注重提高产量往往会导致质量下降。如何在高产和理想的果实品质之间取得微妙的平衡仍然是一个很大的挑战。在本研究中,我们发现破坏番茄叶绿体糖转运蛋白3a (TST3a)的功能可以显著提高水果的重量和风味。在番茄中,有SlTST1、SlTST3a和SlTST3b三个TSTs,它们对果糖和葡萄糖具有相同的糖转运特异性,并在果实发育过程中冗余控制细胞扩增。不同糖积累水平与果实大小和风味显著相关。sltst3a突变体果实变大是糖积累的结果,其原因是叶绿体中SlTST1的丰度增加,并且SlTST1具有最高的糖转运能力。进一步的研究证实,SlTST3a通过抑制SlTST1与vh1相互作用激酶(SlVIK)的相互作用,阻止SlTST1定位到tono质体。在栽培番茄中突变SlTST3a可以同时提高番茄果实大小和含糖量。我们的研究结果为同时提高水果质量和产量提供了潜在的途径,并为水果发育中储存糖的机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信