Identification and characterization of ternary complexes consisting of FKBP12, MAPRE1 and macrocyclic molecular glues†

IF 3.1 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Michael Salcius, Antonin Tutter, Marianne Fouché, Halil Koc, Dan King, Anxhela Dhembi, Andrei Golosov, Wolfgang Jahnke, Chrystèle Henry, Dayana Argoti, Weiping Jia, Liliana Pedro, Lauren Connor, Philippe Piechon, Francesca Fabbiani, Regis Denay, Emine Sager, Juergen Kuehnoel, Marie-Anne Lozach, Fabio Lima, Angela Vitrey, Shu-Yu Chen, Gregory Michaud and Hans-Joerg Roth
{"title":"Identification and characterization of ternary complexes consisting of FKBP12, MAPRE1 and macrocyclic molecular glues†","authors":"Michael Salcius, Antonin Tutter, Marianne Fouché, Halil Koc, Dan King, Anxhela Dhembi, Andrei Golosov, Wolfgang Jahnke, Chrystèle Henry, Dayana Argoti, Weiping Jia, Liliana Pedro, Lauren Connor, Philippe Piechon, Francesca Fabbiani, Regis Denay, Emine Sager, Juergen Kuehnoel, Marie-Anne Lozach, Fabio Lima, Angela Vitrey, Shu-Yu Chen, Gregory Michaud and Hans-Joerg Roth","doi":"10.1039/D4CB00279B","DOIUrl":null,"url":null,"abstract":"<p >Many disease-relevant and functionally well-validated targets are difficult to drug. Their poorly defined 3D structure without deep hydrophobic pockets makes the development of ligands with low molecular weight and high affinity almost impossible. For these targets, incorporation into a ternary complex may be a viable alternative to modulate and in most cases inhibit their function. Therefore, we are interested in methods to identify and characterize molecular glues. In a protein array screen of 50 different macrocyclic FKBP12 ligands against 2500 different randomly selected proteins, a molecular glue compound was found to recruit a dimeric protein called MAPRE1 to FKBP12 in a compound-dependent manner. The corresponding ternary complex was characterized by TR-FRET proximity assay and native MS spectroscopy. Insights into the 3D structure of the ternary complex were obtained by 2D protein NMR spectroscopy and finally by an X-ray structure, which revealed the ternary complex as a 2 : 2 : 2 FKBP12 : molecular glue : MAPRE1 complex exhibiting multiple interactions that occur exclusively in the ternary complex and lead to significant cooperativity <em>α</em>. Using the X-ray structure, rationally guided synthesis of a series of analogues led to the cooperativity driven improvement in the stability of the ternary complex. Furthermore, the ternary complex formation of the series was confirmed by cellular NanoBiT assays, whose <em>A</em><small><sub>max</sub></small> values correlate with those from the TR-FRET proximity assay. Furthermore, NanoBiT experiments showed the functional impact (inhibition) of these molecular glues on the interaction of MAPRE1 with its intracellular native partners.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 5","pages":" 788-799"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cb/d4cb00279b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many disease-relevant and functionally well-validated targets are difficult to drug. Their poorly defined 3D structure without deep hydrophobic pockets makes the development of ligands with low molecular weight and high affinity almost impossible. For these targets, incorporation into a ternary complex may be a viable alternative to modulate and in most cases inhibit their function. Therefore, we are interested in methods to identify and characterize molecular glues. In a protein array screen of 50 different macrocyclic FKBP12 ligands against 2500 different randomly selected proteins, a molecular glue compound was found to recruit a dimeric protein called MAPRE1 to FKBP12 in a compound-dependent manner. The corresponding ternary complex was characterized by TR-FRET proximity assay and native MS spectroscopy. Insights into the 3D structure of the ternary complex were obtained by 2D protein NMR spectroscopy and finally by an X-ray structure, which revealed the ternary complex as a 2 : 2 : 2 FKBP12 : molecular glue : MAPRE1 complex exhibiting multiple interactions that occur exclusively in the ternary complex and lead to significant cooperativity α. Using the X-ray structure, rationally guided synthesis of a series of analogues led to the cooperativity driven improvement in the stability of the ternary complex. Furthermore, the ternary complex formation of the series was confirmed by cellular NanoBiT assays, whose Amax values correlate with those from the TR-FRET proximity assay. Furthermore, NanoBiT experiments showed the functional impact (inhibition) of these molecular glues on the interaction of MAPRE1 with its intracellular native partners.

Abstract Image

由FKBP12、MAPRE1和大环分子胶组成的三元配合物的鉴定与表征。
许多与疾病相关且功能良好的靶点很难进行药物治疗。它们的三维结构不清晰,没有深疏水口袋,使得低分子量和高亲和力的配体的发展几乎是不可能的。对于这些靶标,掺入三元配合物可能是一种可行的替代方案,以调节和在大多数情况下抑制其功能。因此,我们对识别和表征分子胶的方法很感兴趣。在50种不同的大环FKBP12配体针对2500种不同的随机选择蛋白质的蛋白质阵列筛选中,发现一种分子胶化合物以化合物依赖的方式将一种名为MAPRE1的二聚体蛋白招募到FKBP12。用TR-FRET接近法和天然质谱法对相应的三元配合物进行了表征。通过二维蛋白质核磁共振波谱和x射线结构对三元配合物的三维结构进行了深入研究,结果表明该三元配合物为2:2:2 FKBP12:分子胶:MAPRE1复合物,具有多种相互作用,只发生在三元配合物中,并导致显著的协同性α。利用x射线结构,合理引导合成一系列类似物,导致协同性驱动的三元配合物稳定性的提高。此外,该系列的三元配合物形成被细胞NanoBiT实验证实,其A最大值与TR-FRET接近实验的值相关。此外,NanoBiT实验表明,这些分子胶对MAPRE1与其细胞内原生伴侣相互作用的功能影响(抑制)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信