Polytect: an automatic clustering and labeling method for multicolor digital PCR data.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-03-08 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf015
Yao Chen, Ward De Spiegelaere, Wim Trypsteen, Jo Vandesompele, Gertjan Wils, David Gleerup, Antoon Lievens, Olivier Thas, Matthijs Vynck
{"title":"Polytect: an automatic clustering and labeling method for multicolor digital PCR data.","authors":"Yao Chen, Ward De Spiegelaere, Wim Trypsteen, Jo Vandesompele, Gertjan Wils, David Gleerup, Antoon Lievens, Olivier Thas, Matthijs Vynck","doi":"10.1093/nargab/lqaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Digital polymerase chain reaction (dPCR) is a state-of-the-art targeted quantification method of nucleic acids. The technology is based on massive partitioning of a reaction mixture into individual PCR reactions. The resulting partition-level end-point fluorescence intensities are used to classify partitions as positive or negative, i.e. containing or not containing the target nucleic acid(s). Many automatic dPCR partition classification methods have been proposed, but they are limited to the analysis of single- or dual-color dPCR data. While general-purpose or flow cytometry clustering methods can be directly applied to multicolor dPCR data, these methods do not exploit the approximate prior knowledge on cluster center locations available in dPCR data. We present Polytect, a method that relies on crude cluster results from flowPeaks, previously shown to offer good partition classification performance, and subsequently refines flowPeaks' results by automatic cluster merging and cluster labeling, exploiting the prior knowledge on cluster center locations. Comparative analyses with established methods such as flowPeaks, dpcp, and ddPCRclust reveal that Polytect often surpasses established methods, both on empirical and simulated data. Polytect manages to merge excess clusters, while also successfully identifying empty clusters when fewer than the maximally observable number of clusters are present. On par with recent developments in instruments, Polytect extends beyond two-color data. The method is available as an R package and R Shiny app (https://digpcr.shinyapps.io/Polytect/).</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf015"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Digital polymerase chain reaction (dPCR) is a state-of-the-art targeted quantification method of nucleic acids. The technology is based on massive partitioning of a reaction mixture into individual PCR reactions. The resulting partition-level end-point fluorescence intensities are used to classify partitions as positive or negative, i.e. containing or not containing the target nucleic acid(s). Many automatic dPCR partition classification methods have been proposed, but they are limited to the analysis of single- or dual-color dPCR data. While general-purpose or flow cytometry clustering methods can be directly applied to multicolor dPCR data, these methods do not exploit the approximate prior knowledge on cluster center locations available in dPCR data. We present Polytect, a method that relies on crude cluster results from flowPeaks, previously shown to offer good partition classification performance, and subsequently refines flowPeaks' results by automatic cluster merging and cluster labeling, exploiting the prior knowledge on cluster center locations. Comparative analyses with established methods such as flowPeaks, dpcp, and ddPCRclust reveal that Polytect often surpasses established methods, both on empirical and simulated data. Polytect manages to merge excess clusters, while also successfully identifying empty clusters when fewer than the maximally observable number of clusters are present. On par with recent developments in instruments, Polytect extends beyond two-color data. The method is available as an R package and R Shiny app (https://digpcr.shinyapps.io/Polytect/).

Polytect:多色数字PCR数据的自动聚类和标记方法。
数字聚合酶链反应(dPCR)是一种先进的核酸靶向定量方法。该技术基于将反应混合物大量分割成单个PCR反应。所得分区级终点荧光强度用于将分区分类为阳性或阴性,即含有或不含目标核酸。目前已经提出了许多自动dPCR分割分类方法,但它们都局限于对单色或双色dPCR数据的分析。虽然通用或流式细胞术聚类方法可以直接应用于多色dPCR数据,但这些方法没有利用dPCR数据中可用的聚类中心位置的近似先验知识。我们提出了Polytect,一种依赖于flowPeaks原始聚类结果的方法,该方法先前显示具有良好的分区分类性能,随后通过自动聚类合并和聚类标记来改进flowPeaks结果,利用聚类中心位置的先验知识。与flowPeaks、dpcp和ddPCRclust等现有方法的对比分析表明,无论是在经验数据还是模拟数据上,Polytect通常都优于现有方法。Polytect设法合并多余的集群,同时也成功地识别空集群,当集群数量少于最大可观察数量时。与仪器的最新发展相媲美,Polytect超越了双色数据。该方法可以通过R包和R Shiny应用程序获得(https://digpcr.shinyapps.io/Polytect/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信