A novel approach to Indian bird species identification: employing visual-acoustic fusion techniques for improved classification accuracy.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1527299
Pralhad Gavali, J Saira Banu
{"title":"A novel approach to Indian bird species identification: employing visual-acoustic fusion techniques for improved classification accuracy.","authors":"Pralhad Gavali, J Saira Banu","doi":"10.3389/frai.2025.1527299","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of bird species is essential for monitoring biodiversity, analyzing ecological patterns, assessing population health, and guiding conservation efforts. Birds serve as vital indicators of environmental change, making species identification critical for habitat protection and understanding ecosystem dynamics. With over 1,300 species, India's avifauna presents significant challenges due to morphological and acoustic similarities among species. For bird monitoring, recent work often uses acoustic sensors to collect bird sounds and an automated bird classification system to recognize bird species. Traditional machine learning requires manual feature extraction and model training to build an automated bird classification system. Automatically extracting features is now possible due to recent advances in deep learning models. This study presents a novel approach utilizing visual-acoustic fusion techniques to enhance species identification accuracy. We employ a Deep Convolutional Neural Network (DCNN) to extract features from bird images and a Long Short-Term Memory (LSTM) network to analyze bird calls. By integrating these modalities early in the classification process, our method significantly improves performance compared to traditional methods that rely on either data type alone or utilize late fusion strategies. Testing on the iBC53 (Indian Bird Call) dataset demonstrates an impressive accuracy of 94%, highlighting the effectiveness of our multi-modal fusion approach.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1527299"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1527299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of bird species is essential for monitoring biodiversity, analyzing ecological patterns, assessing population health, and guiding conservation efforts. Birds serve as vital indicators of environmental change, making species identification critical for habitat protection and understanding ecosystem dynamics. With over 1,300 species, India's avifauna presents significant challenges due to morphological and acoustic similarities among species. For bird monitoring, recent work often uses acoustic sensors to collect bird sounds and an automated bird classification system to recognize bird species. Traditional machine learning requires manual feature extraction and model training to build an automated bird classification system. Automatically extracting features is now possible due to recent advances in deep learning models. This study presents a novel approach utilizing visual-acoustic fusion techniques to enhance species identification accuracy. We employ a Deep Convolutional Neural Network (DCNN) to extract features from bird images and a Long Short-Term Memory (LSTM) network to analyze bird calls. By integrating these modalities early in the classification process, our method significantly improves performance compared to traditional methods that rely on either data type alone or utilize late fusion strategies. Testing on the iBC53 (Indian Bird Call) dataset demonstrates an impressive accuracy of 94%, highlighting the effectiveness of our multi-modal fusion approach.

一种识别印度鸟类的新方法:采用视声融合技术提高分类精度。
准确识别鸟类物种对于监测生物多样性、分析生态模式、评估种群健康和指导保护工作至关重要。鸟类是环境变化的重要指标,因此物种识别对于保护栖息地和了解生态系统动态至关重要。印度有超过1300种鸟类,由于物种之间形态和声音的相似性,印度的鸟类面临着巨大的挑战。对于鸟类监测,最近的工作经常使用声学传感器来收集鸟类的声音,并使用自动鸟类分类系统来识别鸟类。传统的机器学习需要人工特征提取和模型训练来构建自动化的鸟类分类系统。由于深度学习模型的最新进展,自动提取特征现在成为可能。本研究提出了一种利用视声融合技术来提高物种识别精度的新方法。我们使用深度卷积神经网络(DCNN)从鸟类图像中提取特征,并使用长短期记忆(LSTM)网络分析鸟类叫声。通过在分类过程的早期集成这些模式,与仅依赖数据类型或利用后期融合策略的传统方法相比,我们的方法显着提高了性能。在iBC53(印度鸟叫声)数据集上的测试显示了94%的令人印象深刻的准确率,突出了我们的多模态融合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信