Role of GPX3+ astrocytes in breast cancer brain metastasis activated by circulating tumor cell exosomes.

IF 6.8 1区 医学 Q1 ONCOLOGY
Guanghui Huang, Gongwen Xu, Qianqian Cao, Sheng Li, Hao Li, Xiaonan Zhang, Xiaomei Li
{"title":"Role of GPX3+ astrocytes in breast cancer brain metastasis activated by circulating tumor cell exosomes.","authors":"Guanghui Huang, Gongwen Xu, Qianqian Cao, Sheng Li, Hao Li, Xiaonan Zhang, Xiaomei Li","doi":"10.1038/s41698-025-00833-9","DOIUrl":null,"url":null,"abstract":"<p><p>Brain metastasis from breast cancer (BMBC) contributes significantly to mortality, yet its mechanisms remain unclear. This study investigates the activation of GPX3+ astrocytes by circulating tumor cell (CTC)-derived exosomes in the metastatic process. Using a mouse model of BMBC, we performed single-cell RNA sequencing (scRNA-seq) and metabolomics to explore the role of GPX3+ astrocytes in the brain microenvironment. We found that CTCs activate these astrocytes, promoting IL-1β production and Th17 cell differentiation, crucial for the formation of the metastatic niche. Conditional knockout of GPX3 reduced brain metastasis and extended survival, highlighting its importance in metastasis. Our findings uncover a novel mechanism by which CTCs activate GPX3+ astrocytes to drive breast cancer brain metastasis, suggesting new therapeutic targets for intervention.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"64"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00833-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brain metastasis from breast cancer (BMBC) contributes significantly to mortality, yet its mechanisms remain unclear. This study investigates the activation of GPX3+ astrocytes by circulating tumor cell (CTC)-derived exosomes in the metastatic process. Using a mouse model of BMBC, we performed single-cell RNA sequencing (scRNA-seq) and metabolomics to explore the role of GPX3+ astrocytes in the brain microenvironment. We found that CTCs activate these astrocytes, promoting IL-1β production and Th17 cell differentiation, crucial for the formation of the metastatic niche. Conditional knockout of GPX3 reduced brain metastasis and extended survival, highlighting its importance in metastasis. Our findings uncover a novel mechanism by which CTCs activate GPX3+ astrocytes to drive breast cancer brain metastasis, suggesting new therapeutic targets for intervention.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信