Gyanendra Panchal, Federico Stramaglia, Pawan Kumar, Enrico Schierle, Klaus Habicht, Carlos A F Vaz, Katharina Fritsch
{"title":"Atomic scale determination of magnetism and stoichiometry at the La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>/SrTiO<sub>3</sub> interface: investigation of inverse hysteresis.","authors":"Gyanendra Panchal, Federico Stramaglia, Pawan Kumar, Enrico Schierle, Klaus Habicht, Carlos A F Vaz, Katharina Fritsch","doi":"10.1038/s41427-025-00590-y","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling the correlations and electronic reconstruction at the interface of transition metal oxide heterostructures provides a new pathway for tuning their unique physical properties. Here, we investigate the effects of interfacial nonstoichiometry and vertical phase separation on the magnetic properties and proximity-induced magnetism of epitaxial La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> (LSMO)/SrTiO<sub>3</sub>(001) oxide heterostructures. We also reinvestigate the recently observed inverse hysteresis behavior reported for this system, which we find emanates from the remanent field of the superconducting solenoid and not from antiferromagnetic intra-layer exchange coupling in low coercivity LSMO thin films. Combined atomically resolved electron energy loss spectroscopy, element-specific X-ray magnetic circular dichroism, and interface-sensitive polarized soft X-ray resonant magnetic reflectivity show the formation of a Mn<sup>3+</sup>-enriched interfacial LSMO layer, of a Ti<sup>3+</sup>-derived magnetic interface layer coupled ferromagnetically to La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>, together with a small density of O-vacancies at the interface. These results not only advance the understanding of the magnetism and spin structure of correlated oxide interfaces but also hold promise for practical applications, especially in devices where the performance relies on the control and influence of spin polarization currents by the interfacial spin structure.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"17 1","pages":"9"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-025-00590-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling the correlations and electronic reconstruction at the interface of transition metal oxide heterostructures provides a new pathway for tuning their unique physical properties. Here, we investigate the effects of interfacial nonstoichiometry and vertical phase separation on the magnetic properties and proximity-induced magnetism of epitaxial La0.7Sr0.3MnO3 (LSMO)/SrTiO3(001) oxide heterostructures. We also reinvestigate the recently observed inverse hysteresis behavior reported for this system, which we find emanates from the remanent field of the superconducting solenoid and not from antiferromagnetic intra-layer exchange coupling in low coercivity LSMO thin films. Combined atomically resolved electron energy loss spectroscopy, element-specific X-ray magnetic circular dichroism, and interface-sensitive polarized soft X-ray resonant magnetic reflectivity show the formation of a Mn3+-enriched interfacial LSMO layer, of a Ti3+-derived magnetic interface layer coupled ferromagnetically to La0.7Sr0.3MnO3, together with a small density of O-vacancies at the interface. These results not only advance the understanding of the magnetism and spin structure of correlated oxide interfaces but also hold promise for practical applications, especially in devices where the performance relies on the control and influence of spin polarization currents by the interfacial spin structure.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.