ROS-ATM-CHK2 axis stabilizes HIF-1α and promotes tumor angiogenesis in hypoxic microenvironment.

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ming Bai, Pengzhi Xu, Rong Cheng, Na Li, Sunrun Cao, Qiqiang Guo, Xiaoxun Wang, Chunlu Li, Ning Bai, Bo Jiang, Xuan Wu, Xiaoyu Song, Chen Sun, Mingfang Zhao, Liu Cao
{"title":"ROS-ATM-CHK2 axis stabilizes HIF-1α and promotes tumor angiogenesis in hypoxic microenvironment.","authors":"Ming Bai, Pengzhi Xu, Rong Cheng, Na Li, Sunrun Cao, Qiqiang Guo, Xiaoxun Wang, Chunlu Li, Ning Bai, Bo Jiang, Xuan Wu, Xiaoyu Song, Chen Sun, Mingfang Zhao, Liu Cao","doi":"10.1038/s41388-025-03336-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia is an established hallmark of tumorigenesis. HIF-1α activation may be the prime driver of adaptive regulation of tumor cells reacting to hypoxic conditions of the tumor microenvironment. Here, we report a novel regulatory mechanism in charge of the fundamental stability of HIF-1α in solid tumor. Under hypoxic conditions, the checkpoint kinase CHK2 binds to HIF-1α and inhibits its ubiquitination, which is highly likely due to phosphorylation of a threonine residue (Thr645), a formerly uncharacterized site within the inhibitory domain. Meanwhile, HIF-1α phosphorylation induced by CHK2 promotes complex formation between HIF-1-α and the deubiquitination enzyme USP7, increasing stability under hypoxic conditions. This novel modification of the crosstalk between phosphorylation and ubiquitination of HIF-1α mediated by CHK2 enriches the post-translational modification spectrum of HIF-1α, thus offering novel insights into potential anti-angiogenesis therapies.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03336-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxia is an established hallmark of tumorigenesis. HIF-1α activation may be the prime driver of adaptive regulation of tumor cells reacting to hypoxic conditions of the tumor microenvironment. Here, we report a novel regulatory mechanism in charge of the fundamental stability of HIF-1α in solid tumor. Under hypoxic conditions, the checkpoint kinase CHK2 binds to HIF-1α and inhibits its ubiquitination, which is highly likely due to phosphorylation of a threonine residue (Thr645), a formerly uncharacterized site within the inhibitory domain. Meanwhile, HIF-1α phosphorylation induced by CHK2 promotes complex formation between HIF-1-α and the deubiquitination enzyme USP7, increasing stability under hypoxic conditions. This novel modification of the crosstalk between phosphorylation and ubiquitination of HIF-1α mediated by CHK2 enriches the post-translational modification spectrum of HIF-1α, thus offering novel insights into potential anti-angiogenesis therapies.

ROS-ATM-CHK2 轴可稳定 HIF-1α 并促进缺氧微环境中的肿瘤血管生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信