{"title":"The complex roles of IL-36 and IL-38 in cancer: friends or foes?","authors":"Méabh Finucane, Elizabeth Brint, Aileen Houston","doi":"10.1038/s41388-025-03293-4","DOIUrl":null,"url":null,"abstract":"The interleukin-36 (IL-36) family comprises of three pro-inflammatory receptor agonists (IL-36α, IL-36β and IL-36γ), two anti-inflammatory receptor antagonists (IL-36RA and IL-38) along with the IL-36 receptor (IL-36R). Part of the IL-1 cytokine superfamily, the IL-36 family was discovered in the early 2000s due to the homology of its member sequences to the IL-1 cytokines. As pro- and anti-inflammatory cytokines, respectively, IL-36α, IL-36β, IL-36γ and IL-38 aid in maintaining homoeostasis by reciprocally regulating the body’s response to damage and disease through IL-36R-associated signalling. With the significant roles of IL-36α, IL-36β and IL-36γ in regulating the immune response realised, interest has grown in investigating their roles in cancer. While initial studies indicated solely tumour-suppressing roles, more recent work has identified tumour-promoting roles in cancer, suggesting a more complex dual functionality of the IL-36 cytokines. The activity of IL-38 in cancer is similarly complex, with the receptor antagonist displaying distinct tumour-suppressive roles, particularly in colorectal cancer (CRC), in addition to broad tumour-promoting roles in various other malignancies. This review provides a comprehensive overview of the IL-36 and IL-38 cytokines, their activation and IL-36R signalling, the physiological functions of these cytokines, and their activity in cancer.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"44 13","pages":"851-861"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41388-025-03293-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-025-03293-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interleukin-36 (IL-36) family comprises of three pro-inflammatory receptor agonists (IL-36α, IL-36β and IL-36γ), two anti-inflammatory receptor antagonists (IL-36RA and IL-38) along with the IL-36 receptor (IL-36R). Part of the IL-1 cytokine superfamily, the IL-36 family was discovered in the early 2000s due to the homology of its member sequences to the IL-1 cytokines. As pro- and anti-inflammatory cytokines, respectively, IL-36α, IL-36β, IL-36γ and IL-38 aid in maintaining homoeostasis by reciprocally regulating the body’s response to damage and disease through IL-36R-associated signalling. With the significant roles of IL-36α, IL-36β and IL-36γ in regulating the immune response realised, interest has grown in investigating their roles in cancer. While initial studies indicated solely tumour-suppressing roles, more recent work has identified tumour-promoting roles in cancer, suggesting a more complex dual functionality of the IL-36 cytokines. The activity of IL-38 in cancer is similarly complex, with the receptor antagonist displaying distinct tumour-suppressive roles, particularly in colorectal cancer (CRC), in addition to broad tumour-promoting roles in various other malignancies. This review provides a comprehensive overview of the IL-36 and IL-38 cytokines, their activation and IL-36R signalling, the physiological functions of these cytokines, and their activity in cancer.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.