Transposable elements in genomic architecture of Monilinia fungal phytopathogens and TE-driven DMI-resistance adaptation.

IF 4.7 2区 生物学 Q1 GENETICS & HEREDITY
Muhammed Raşit Durak, Hilal Özkılınç
{"title":"Transposable elements in genomic architecture of Monilinia fungal phytopathogens and TE-driven DMI-resistance adaptation.","authors":"Muhammed Raşit Durak, Hilal Özkılınç","doi":"10.1186/s13100-025-00343-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fungicide resistance poses a significant challenge to plant disease management and influences the evolutionary dynamics of fungal pathogens. Besides being important phytopathogens, Monilinia species have become a model for discovering many fundamental questions related to fungal pathosystems. In this study, DMI-propiconazole sensitivity was investigated in view of transposable element (TE) dynamics in M. fructicola and M. laxa.</p><p><strong>Results: </strong>Propiconazole-sensitivity of 109 M. fructicola and 20 M. laxa isolates from different regions of Türkiye was assessed. Comprehensive TE identification within the species revealed that Class I elements were predominant, and TEs constituted approximately 9% of the genome for both M. fructicola and M. laxa, with a total of 15,327 and 10,710 TEs, respectively. An experimental evolution plan was developed for Monilinia that allows observing phenotypic and genotypic changes over successive generations under controlled selection pressures. Dynamic changes in TE content were discovered throughout the experimental evolution of M. fructicola under propiconazole pressure. With a net change of 187 TEs, the evolved strain showed an expansion of TE sequences, whereas different TE classes displayed diverse patterns of increase/decrease. Additionally, the presence of a nested TE upstream of the CYP51 gene was observed in less-sensitive M. fructicola isolates but absent in highly-sensitive ones. Gene expressions of CYP51 differed significantly between TE-containing and TE-lacking isolates, strongly supporting the contribution of this TE to fungicide resistance.</p><p><strong>Conclusion: </strong>This study establishes a critical link between TEs and DMI fungicide resistance by associating a nested TE with reduced sensitivity to propiconazole. We introduce an innovative experimental evolution framework for studying genomic changes under selective pressure and provide a comprehensive characterization of Monilinia TEs. These findings significantly advance our understanding of molecular resistance mechanisms in fungal pathogens, offering insights for more effective disease management.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"16 1","pages":"8"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-025-00343-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fungicide resistance poses a significant challenge to plant disease management and influences the evolutionary dynamics of fungal pathogens. Besides being important phytopathogens, Monilinia species have become a model for discovering many fundamental questions related to fungal pathosystems. In this study, DMI-propiconazole sensitivity was investigated in view of transposable element (TE) dynamics in M. fructicola and M. laxa.

Results: Propiconazole-sensitivity of 109 M. fructicola and 20 M. laxa isolates from different regions of Türkiye was assessed. Comprehensive TE identification within the species revealed that Class I elements were predominant, and TEs constituted approximately 9% of the genome for both M. fructicola and M. laxa, with a total of 15,327 and 10,710 TEs, respectively. An experimental evolution plan was developed for Monilinia that allows observing phenotypic and genotypic changes over successive generations under controlled selection pressures. Dynamic changes in TE content were discovered throughout the experimental evolution of M. fructicola under propiconazole pressure. With a net change of 187 TEs, the evolved strain showed an expansion of TE sequences, whereas different TE classes displayed diverse patterns of increase/decrease. Additionally, the presence of a nested TE upstream of the CYP51 gene was observed in less-sensitive M. fructicola isolates but absent in highly-sensitive ones. Gene expressions of CYP51 differed significantly between TE-containing and TE-lacking isolates, strongly supporting the contribution of this TE to fungicide resistance.

Conclusion: This study establishes a critical link between TEs and DMI fungicide resistance by associating a nested TE with reduced sensitivity to propiconazole. We introduce an innovative experimental evolution framework for studying genomic changes under selective pressure and provide a comprehensive characterization of Monilinia TEs. These findings significantly advance our understanding of molecular resistance mechanisms in fungal pathogens, offering insights for more effective disease management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mobile DNA
Mobile DNA GENETICS & HEREDITY-
CiteScore
8.20
自引率
6.10%
发文量
26
审稿时长
11 weeks
期刊介绍: Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信