{"title":"Evaluation of hepatitis A virus recombinant proteins for detecting anti-HAV IgM and IgG antibodies.","authors":"Supriya Hunderkar, Nital Ganorkar, Atul Walimbe, Kavita Lole","doi":"10.1128/spectrum.01528-24","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis A virus (HAV) is a major causative agent of self-limiting liver infections. India was highly endemic for HAV in the past; children were exposed to the virus at an early age without any disease symptoms and developed lifelong immunity. With improvements in living conditions, an epidemiological transition is occurring. There is a significant increase in hepatitis A outbreaks involving adolescents and young adults. The gold standard for hepatitis A diagnosis is anti-HAV IgM antibodies. Although antibody responses are primarily targeted against HAV structural proteins (capsid proteins), non-structural proteins are also immunogenic. In the present study, we expressed HAV capsid proteins VP1-2A, VP0 (VP4 + VP2), VP3, and non-structural protein 3C<sup>Pro</sup> in the bacterial system and explored the possible use of these as antigens to detect anti-HAV IgM and IgG antibodies using a well-defined serum sample panel. The capsid protein-based assays showed overall less sensitivity for detection of both anti-HAV IgM and IgG antibodies as compared to whole virus antigen-based commercial assays. Among capsid proteins, rVP1-2A showed the highest sensitivity (86.3%) and specificity (84.2%) in detecting anti-HAV IgG, while rVP0 (VP2 + VP4) exhibited the highest sensitivity (79.5%) and specificity (80.2%) for IgM antibodies. Interestingly, r3C<sup>Pro</sup> exhibited higher sensitivity (96.9%) and specificity (93.2%) in IgM detection and 93.94% sensitivity and 88% specificity for IgG, indicating its usefulness in detecting both anti-HAV IgM and IgG antibodies during the acute phase of the disease. Though 3C<sup>Pro</sup> appeared to be useful in differentiating antibody responses due to infection and vaccination, our analysis revealed that the anti-3C<sup>Pro</sup> antibody response is short-lived after natural infection, and hence, it cannot be used as a marker to differentiate between infection and vaccination. However, 3C<sup>Pro</sup> would be useful for developing a hepatitis A diagnostic assay.</p><p><strong>Importance: </strong>Hepatitis A was highly endemic in India earlier. With recent developments, there is a shift in the endemicity to intermediate levels. This has resulted in the occurrence of hepatitis outbreaks with symptomatic infections in adolescents and adults. Occasionally, the disease manifestations are serious, leading to acute liver failure. In such a situation, there is a need for a timely diagnosis of the infection.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0152824"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.01528-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis A virus (HAV) is a major causative agent of self-limiting liver infections. India was highly endemic for HAV in the past; children were exposed to the virus at an early age without any disease symptoms and developed lifelong immunity. With improvements in living conditions, an epidemiological transition is occurring. There is a significant increase in hepatitis A outbreaks involving adolescents and young adults. The gold standard for hepatitis A diagnosis is anti-HAV IgM antibodies. Although antibody responses are primarily targeted against HAV structural proteins (capsid proteins), non-structural proteins are also immunogenic. In the present study, we expressed HAV capsid proteins VP1-2A, VP0 (VP4 + VP2), VP3, and non-structural protein 3CPro in the bacterial system and explored the possible use of these as antigens to detect anti-HAV IgM and IgG antibodies using a well-defined serum sample panel. The capsid protein-based assays showed overall less sensitivity for detection of both anti-HAV IgM and IgG antibodies as compared to whole virus antigen-based commercial assays. Among capsid proteins, rVP1-2A showed the highest sensitivity (86.3%) and specificity (84.2%) in detecting anti-HAV IgG, while rVP0 (VP2 + VP4) exhibited the highest sensitivity (79.5%) and specificity (80.2%) for IgM antibodies. Interestingly, r3CPro exhibited higher sensitivity (96.9%) and specificity (93.2%) in IgM detection and 93.94% sensitivity and 88% specificity for IgG, indicating its usefulness in detecting both anti-HAV IgM and IgG antibodies during the acute phase of the disease. Though 3CPro appeared to be useful in differentiating antibody responses due to infection and vaccination, our analysis revealed that the anti-3CPro antibody response is short-lived after natural infection, and hence, it cannot be used as a marker to differentiate between infection and vaccination. However, 3CPro would be useful for developing a hepatitis A diagnostic assay.
Importance: Hepatitis A was highly endemic in India earlier. With recent developments, there is a shift in the endemicity to intermediate levels. This has resulted in the occurrence of hepatitis outbreaks with symptomatic infections in adolescents and adults. Occasionally, the disease manifestations are serious, leading to acute liver failure. In such a situation, there is a need for a timely diagnosis of the infection.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.