Quantitative assessment of mitochondrial membrane potential in macrophages in sepsis.

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Methods in cell biology Pub Date : 2025-01-01 Epub Date: 2024-02-29 DOI:10.1016/bs.mcb.2024.01.004
Ajaz Ahmad, Paulraj Kanmani, Guochang Hu
{"title":"Quantitative assessment of mitochondrial membrane potential in macrophages in sepsis.","authors":"Ajaz Ahmad, Paulraj Kanmani, Guochang Hu","doi":"10.1016/bs.mcb.2024.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis, a life-threatening condition characterized by dysregulated host response to infection, poses a significant public healthcare challenge. Excessive inflammatory responses during sepsis can lead to mitochondrial dysfunctions, resulting in organ damage. One hallmark of mitochondrial dysfunction is the reduction of mitochondrial membrane potential, which disrupts cellular metabolism, bioenergetics, and decreases the production of high-energy ATP through oxidative phosphorylation. In human sepsis, the mitochondrial membrane potential in peripheral blood monocytes has been identified as a marker of disease severity. Here, we present a detailed and widely accepted protocol for the detection of mitochondrial membrane potential using the JC-1 fluorescent dye in murine bone marrow-derived macrophages and J774A.1 macrophages following stimulation with lipopolysaccharides. This protocol is routinely employed and can be easily adapted for various cell types, intact tissues, and isolated mitochondria with minimal modifications. By utilizing this technique, researchers can gain valuable insights into mitochondrial function in different experimental contexts, potentially advancing our understanding of the pathogenesis and treatment of sepsis-related mitochondrial dysfunction.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"194 ","pages":"43-58"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.01.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis, a life-threatening condition characterized by dysregulated host response to infection, poses a significant public healthcare challenge. Excessive inflammatory responses during sepsis can lead to mitochondrial dysfunctions, resulting in organ damage. One hallmark of mitochondrial dysfunction is the reduction of mitochondrial membrane potential, which disrupts cellular metabolism, bioenergetics, and decreases the production of high-energy ATP through oxidative phosphorylation. In human sepsis, the mitochondrial membrane potential in peripheral blood monocytes has been identified as a marker of disease severity. Here, we present a detailed and widely accepted protocol for the detection of mitochondrial membrane potential using the JC-1 fluorescent dye in murine bone marrow-derived macrophages and J774A.1 macrophages following stimulation with lipopolysaccharides. This protocol is routinely employed and can be easily adapted for various cell types, intact tissues, and isolated mitochondria with minimal modifications. By utilizing this technique, researchers can gain valuable insights into mitochondrial function in different experimental contexts, potentially advancing our understanding of the pathogenesis and treatment of sepsis-related mitochondrial dysfunction.

脓毒症中巨噬细胞线粒体膜电位的定量评价。
脓毒症是一种危及生命的疾病,其特征是宿主对感染的反应失调,对公共卫生构成了重大挑战。脓毒症期间过度的炎症反应可导致线粒体功能障碍,导致器官损伤。线粒体功能障碍的一个标志是线粒体膜电位的降低,这破坏了细胞代谢、生物能量学,并通过氧化磷酸化减少了高能ATP的产生。在人类败血症中,外周血单核细胞的线粒体膜电位已被确定为疾病严重程度的标志。在这里,我们提出了一种详细且被广泛接受的方案,使用JC-1荧光染料检测小鼠骨髓源性巨噬细胞和J774A的线粒体膜电位。脂多糖刺激后的巨噬细胞。该方案是常规使用的,可以很容易地适用于各种细胞类型,完整的组织和分离的线粒体,修改最小。通过利用这项技术,研究人员可以在不同的实验背景下获得对线粒体功能的有价值的见解,有可能推进我们对败血症相关线粒体功能障碍的发病机制和治疗的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信