Ai-Ling Tian, Marion Leduc, Marine Fidelle, Laurence Zitvogel, Guido Kroemer, Oliver Kepp
{"title":"A screening system to determine the effect of bacterial metabolites on MAdCAM-1 expression by transformed endothelial sinusoidal cells.","authors":"Ai-Ling Tian, Marion Leduc, Marine Fidelle, Laurence Zitvogel, Guido Kroemer, Oliver Kepp","doi":"10.1016/bs.mcb.2024.01.007","DOIUrl":null,"url":null,"abstract":"<p><p>Mucosal addressin cell adhesion molecule 1 (MAdCAM-1) expression in high endothelial venules is regulated by bacterial metabolites emanating from the gut and the interaction of MAdCAM-1 with α4β7 integrin mediates lymphocyte diapedesis into gut-associated secondary lymphoid tissues. MAdCAM-1 thus controls the abundance of circulating immunosuppressive T cells that can reach malignant tissue and compromise the therapeutic efficacy of anticancer immunotherapy. Here we describe a biosensor-based phenotypic assessment that facilitates the high throughput screening (HTS)-compatible assessment of MAdCAM-1 regulation in response to exposure to bacterial metabolites. This screening routine encompasses high endothelial venule cells expressing green fluorescent protein (GFP) under the control of the MAdCAM-1 promoter combined with robot-assisted bioimaging and a multistep image analysis pipeline. Altogether this system facilitates the discovery of bacterial composites that control anticancer immunity via the sequestration of Th17-specific regulatory T cells (Treg17) in the gut.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"194 ","pages":"119-133"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.01.007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Mucosal addressin cell adhesion molecule 1 (MAdCAM-1) expression in high endothelial venules is regulated by bacterial metabolites emanating from the gut and the interaction of MAdCAM-1 with α4β7 integrin mediates lymphocyte diapedesis into gut-associated secondary lymphoid tissues. MAdCAM-1 thus controls the abundance of circulating immunosuppressive T cells that can reach malignant tissue and compromise the therapeutic efficacy of anticancer immunotherapy. Here we describe a biosensor-based phenotypic assessment that facilitates the high throughput screening (HTS)-compatible assessment of MAdCAM-1 regulation in response to exposure to bacterial metabolites. This screening routine encompasses high endothelial venule cells expressing green fluorescent protein (GFP) under the control of the MAdCAM-1 promoter combined with robot-assisted bioimaging and a multistep image analysis pipeline. Altogether this system facilitates the discovery of bacterial composites that control anticancer immunity via the sequestration of Th17-specific regulatory T cells (Treg17) in the gut.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.