Perceptual adaptation to dysarthric speech is modulated by concurrent phonological processing: A dual task study.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Patti Adank, Han Wang, Taylor Hepworth, Stephanie A Borrie
{"title":"Perceptual adaptation to dysarthric speech is modulated by concurrent phonological processing: A dual task study.","authors":"Patti Adank, Han Wang, Taylor Hepworth, Stephanie A Borrie","doi":"10.1121/10.0035883","DOIUrl":null,"url":null,"abstract":"<p><p>Listeners can adapt to noise-vocoded speech under divided attention using a dual task design [Wang, Chen, Yan, McGettigan, Rosen, and Adank, Trends Hear. 27, 23312165231192297 (2023)]. Adaptation to noise-vocoded speech, an artificial degradation, was largely unaffected for domain-general (visuomotor) and domain-specific (semantic or phonological) dual tasks. The study by Wang et al. was replicated in an online between-subject experiment with 4 conditions (N = 192) using 40 dysarthric sentences, a natural, real-world variation of the speech signal listeners can adapt to, to provide a closer test of the role of attention in adaptation. Participants completed a speech-only task (control) or a dual task, aiming to recruit domain-specific (phonological or lexical) or domain-general (visual) attentional processes. The results showed initial suppression of adaptation in the phonological condition during the first ten trials in addition to poorer overall speech comprehension compared to the speech-only, lexical, and visuomotor conditions. Yet, as there was no difference in the rate of adaptation across the 40 trials for the 4 conditions, it was concluded that perceptual adaptation to dysarthric speech could occur under divided attention, and it seems likely that adaptation is an automatic cognitive process that can occur under load.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 3","pages":"1598-1611"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0035883","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Listeners can adapt to noise-vocoded speech under divided attention using a dual task design [Wang, Chen, Yan, McGettigan, Rosen, and Adank, Trends Hear. 27, 23312165231192297 (2023)]. Adaptation to noise-vocoded speech, an artificial degradation, was largely unaffected for domain-general (visuomotor) and domain-specific (semantic or phonological) dual tasks. The study by Wang et al. was replicated in an online between-subject experiment with 4 conditions (N = 192) using 40 dysarthric sentences, a natural, real-world variation of the speech signal listeners can adapt to, to provide a closer test of the role of attention in adaptation. Participants completed a speech-only task (control) or a dual task, aiming to recruit domain-specific (phonological or lexical) or domain-general (visual) attentional processes. The results showed initial suppression of adaptation in the phonological condition during the first ten trials in addition to poorer overall speech comprehension compared to the speech-only, lexical, and visuomotor conditions. Yet, as there was no difference in the rate of adaptation across the 40 trials for the 4 conditions, it was concluded that perceptual adaptation to dysarthric speech could occur under divided attention, and it seems likely that adaptation is an automatic cognitive process that can occur under load.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信