Spatial characterization of RPE structure and lipids in the PEX1-p.Gly844Asp mouse model for Zellweger spectrum disorder.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Samy Omri, Catherine Argyriou, Rachel S Pryce, Erminia Di Pietro, Pierre Chaurand, Nancy Braverman
{"title":"Spatial characterization of RPE structure and lipids in the PEX1-p.Gly844Asp mouse model for Zellweger spectrum disorder.","authors":"Samy Omri, Catherine Argyriou, Rachel S Pryce, Erminia Di Pietro, Pierre Chaurand, Nancy Braverman","doi":"10.1016/j.jlr.2025.100771","DOIUrl":null,"url":null,"abstract":"<p><p>Zellweger Spectrum Disorder (ZSD) is caused by defects in PEX genes, whose proteins are required for peroxisome assembly and function. Peroxisome dysfunction in ZSD causes multisystem effects, with progressive retinal degeneration (RD) among the most frequent clinical findings. However, much remains unknown about how peroxisome deficiency causes RD. To study RD pathophysiology in ZSD, we used the PEX1-p.Gly844Asp (G844D) mouse model, which represents the common human PEX1-p.Gly843Asp (G843D) variant. We previously reported diminished retinal function, diminished functional vision, and neural retina structural defects in this model. Here, we investigate the retinal pigment epithelium (RPE) phenotype, examining morphological, inflammatory, and lipid changes at 1, 3, and 6 months of age. We report that RPE cells exhibit evident degeneration by 3 months that worsens with time, starts in the dorsal pole, and is accompanied by subretinal inflammatory cell infiltration. We match these events with imaging mass spectrometry for regional analysis of lipids in the RPE. We identified 47 lipid alterations preceding structural changes, 9 of which localize to the dorsal pole. 29 of these persist to 3 months, with remodeling of the dorsal pole lipid signature. 13 new alterations occur concurrent with histological changes. Abnormalities in peroxisome-dependent lipids detected by LC/MS/MS are exacerbated over time. This study represents the first characterization of RPE in a ZSD model, and the first in situ lipid analysis in peroxisome-deficient tissue. Our findings uncover potential lipid drivers of RD progression in ZSD, and identify candidate biomarkers for retinopathy progression and response to therapy.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100771"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Zellweger Spectrum Disorder (ZSD) is caused by defects in PEX genes, whose proteins are required for peroxisome assembly and function. Peroxisome dysfunction in ZSD causes multisystem effects, with progressive retinal degeneration (RD) among the most frequent clinical findings. However, much remains unknown about how peroxisome deficiency causes RD. To study RD pathophysiology in ZSD, we used the PEX1-p.Gly844Asp (G844D) mouse model, which represents the common human PEX1-p.Gly843Asp (G843D) variant. We previously reported diminished retinal function, diminished functional vision, and neural retina structural defects in this model. Here, we investigate the retinal pigment epithelium (RPE) phenotype, examining morphological, inflammatory, and lipid changes at 1, 3, and 6 months of age. We report that RPE cells exhibit evident degeneration by 3 months that worsens with time, starts in the dorsal pole, and is accompanied by subretinal inflammatory cell infiltration. We match these events with imaging mass spectrometry for regional analysis of lipids in the RPE. We identified 47 lipid alterations preceding structural changes, 9 of which localize to the dorsal pole. 29 of these persist to 3 months, with remodeling of the dorsal pole lipid signature. 13 new alterations occur concurrent with histological changes. Abnormalities in peroxisome-dependent lipids detected by LC/MS/MS are exacerbated over time. This study represents the first characterization of RPE in a ZSD model, and the first in situ lipid analysis in peroxisome-deficient tissue. Our findings uncover potential lipid drivers of RD progression in ZSD, and identify candidate biomarkers for retinopathy progression and response to therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信