A comprehensive and systemic review of the Gentiana: Ethnobotany, traditional applications, phytochemistry, pharmacology, and toxicology in the Mongolian Plateau

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL
Hongzhen Yu , Batzaya Gachmaa , Jiaoneng Yu , Tian-Liang , Xorgan Uranghai , Guangying Guo , Weiwei Xu , Ping Wang , Jinxin Liu , Azzaya Jukov , Urtnasan Mandakh , Danzanchadav Ganbat , Tsambaa Battseren , Almaz Borjigidai
{"title":"A comprehensive and systemic review of the Gentiana: Ethnobotany, traditional applications, phytochemistry, pharmacology, and toxicology in the Mongolian Plateau","authors":"Hongzhen Yu ,&nbsp;Batzaya Gachmaa ,&nbsp;Jiaoneng Yu ,&nbsp;Tian-Liang ,&nbsp;Xorgan Uranghai ,&nbsp;Guangying Guo ,&nbsp;Weiwei Xu ,&nbsp;Ping Wang ,&nbsp;Jinxin Liu ,&nbsp;Azzaya Jukov ,&nbsp;Urtnasan Mandakh ,&nbsp;Danzanchadav Ganbat ,&nbsp;Tsambaa Battseren ,&nbsp;Almaz Borjigidai","doi":"10.1016/j.jep.2025.119573","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div><em>Gentiana</em> is the largest genus within the <em>Gentianaceae</em> family, comprising around 400 species that are widely distributed in temperate alpine regions worldwide, including the Mongolian Plateau. Despite their broad distribution, no comprehensive review on the distribution, ethnobotany, traditional uses, phytochemistry, pharmacology, and toxicology of <em>Gentiana</em> species in the Mongolian plateau.</div></div><div><h3>Aim</h3><div>This paper aims to provide the first detailed summary of <em>Gentiana</em> species distributed in the Mongolian Plateau, including those in Mongolia. It comprehensively addresses their botanical characteristics, traditional applications, phytochemistry, pharmacology, and toxicity, of <em>Gentiana</em>, providing a scientific basis for further research and identifying gaps in knowledge.</div></div><div><h3>Materials and methods</h3><div>Data were collected through a comprehensive survey of journal articles, books, and dissertations from databases such as Web of Science, ScienceDirect, Google Scholar, PubMed, Springer Link, CNKI, VIP, and Wan Fang Data. Additionally, online resources like Flora of China and Plants of the World Online were consulted for species distribution and scientific name verification. Phytochemical compounds were visualized using Chem Draw 14.0 software.</div></div><div><h3>Results</h3><div>This review identifies twenty-nine <em>Gentiana</em> species distributed in the Mongolian Plateau, with nine species having documented folkloric uses for the treating digestive, skin, joint diseases, and sore throat, etc. Phytochemical studies have led to the isolation and identification of 602 compounds, including iridoids, triterpenoids, flavonoids, lignans, coumarins, xanthones, alkaloids, fatty acids, amino acids, organic acids, and polysaccharides. Notably, gentiopicroside (75) and swertiamarin (118) are the most studied monomeric compounds. Crude extracts of <em>Gentiana</em> show a broad spectrum of pharmacological activities, such as anti-inflammatory, analgesic, anti-bacterial, antioxidant, anti-tumor, anti-cancer, anti-diabetic, immunomodulatory, hepatoprotective, gastroprotective, neuroprotective, and joint and bone protective activities, etc. These extracts exhibit no apparent toxicity <em>in vivo</em> and <em>in vitro</em> studies. However, clinical research on the therapeutic applications of <em>Gentiana</em> remains limited.</div></div><div><h3>Conclusions</h3><div>This review provides the first comprehensive summary of <em>Gentiana</em> species from the Mongolian Plateau, covering their distribution, morphology, phytochemistry, traditional uses, and pharmacological activities. Compared to existing literature, it offers a more thorough taxa, emphasizing key bioactive compounds such as gentiopicroside and swertiamarin, which are recognized for their anti-inflammatory and hepatoprotective effects. The review also reveals the correlation between pharmacological activities and traditional applications. Furthermore, many <em>Gentiana</em> species remain underexplored, highlighting significant potential for future research and the development of therapeutic applications.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"345 ","pages":"Article 119573"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125002570","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance

Gentiana is the largest genus within the Gentianaceae family, comprising around 400 species that are widely distributed in temperate alpine regions worldwide, including the Mongolian Plateau. Despite their broad distribution, no comprehensive review on the distribution, ethnobotany, traditional uses, phytochemistry, pharmacology, and toxicology of Gentiana species in the Mongolian plateau.

Aim

This paper aims to provide the first detailed summary of Gentiana species distributed in the Mongolian Plateau, including those in Mongolia. It comprehensively addresses their botanical characteristics, traditional applications, phytochemistry, pharmacology, and toxicity, of Gentiana, providing a scientific basis for further research and identifying gaps in knowledge.

Materials and methods

Data were collected through a comprehensive survey of journal articles, books, and dissertations from databases such as Web of Science, ScienceDirect, Google Scholar, PubMed, Springer Link, CNKI, VIP, and Wan Fang Data. Additionally, online resources like Flora of China and Plants of the World Online were consulted for species distribution and scientific name verification. Phytochemical compounds were visualized using Chem Draw 14.0 software.

Results

This review identifies twenty-nine Gentiana species distributed in the Mongolian Plateau, with nine species having documented folkloric uses for the treating digestive, skin, joint diseases, and sore throat, etc. Phytochemical studies have led to the isolation and identification of 602 compounds, including iridoids, triterpenoids, flavonoids, lignans, coumarins, xanthones, alkaloids, fatty acids, amino acids, organic acids, and polysaccharides. Notably, gentiopicroside (75) and swertiamarin (118) are the most studied monomeric compounds. Crude extracts of Gentiana show a broad spectrum of pharmacological activities, such as anti-inflammatory, analgesic, anti-bacterial, antioxidant, anti-tumor, anti-cancer, anti-diabetic, immunomodulatory, hepatoprotective, gastroprotective, neuroprotective, and joint and bone protective activities, etc. These extracts exhibit no apparent toxicity in vivo and in vitro studies. However, clinical research on the therapeutic applications of Gentiana remains limited.

Conclusions

This review provides the first comprehensive summary of Gentiana species from the Mongolian Plateau, covering their distribution, morphology, phytochemistry, traditional uses, and pharmacological activities. Compared to existing literature, it offers a more thorough taxa, emphasizing key bioactive compounds such as gentiopicroside and swertiamarin, which are recognized for their anti-inflammatory and hepatoprotective effects. The review also reveals the correlation between pharmacological activities and traditional applications. Furthermore, many Gentiana species remain underexplored, highlighting significant potential for future research and the development of therapeutic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信