Connectome-Based Predictive Modeling of PTSD Development Among Recent Trauma Survivors.

IF 10.5 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Ziv Ben-Zion, Alexander J Simon, Matthew Rosenblatt, Nachshon Korem, Or Duek, Israel Liberzon, Arieh Y Shalev, Talma Hendler, Ifat Levy, Ilan Harpaz-Rotem, Dustin Scheinost
{"title":"Connectome-Based Predictive Modeling of PTSD Development Among Recent Trauma Survivors.","authors":"Ziv Ben-Zion, Alexander J Simon, Matthew Rosenblatt, Nachshon Korem, Or Duek, Israel Liberzon, Arieh Y Shalev, Talma Hendler, Ifat Levy, Ilan Harpaz-Rotem, Dustin Scheinost","doi":"10.1001/jamanetworkopen.2025.0331","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>The weak link between subjective symptom-based diagnostics for posttraumatic psychopathology and objective neurobiological indices hinders the development of effective personalized treatments.</p><p><strong>Objective: </strong>To identify early neural networks associated with posttraumatic stress disorder (PTSD) development among recent trauma survivors.</p><p><strong>Design, setting, and participants: </strong>This prognostic study used data from the Neurobehavioral Moderators of Posttraumatic Disease Trajectories (NMPTDT) large-scale longitudinal neuroimaging dataset of recent trauma survivors. The NMPTDT study was conducted from January 20, 2015, to March 11, 2020, and included adult civilians who were admitted to a general hospital emergency department in Israel and screened for early PTSD symptoms indicative of chronic PTSD risk. Enrolled participants completed comprehensive clinical assessments and functional magnetic resonance imaging (fMRI) scans at 1, 6, and 14 months post trauma. Data were analyzed from September 2023 to March 2024.</p><p><strong>Exposure: </strong>Traumatic events included motor vehicle incidents, physical assaults, robberies, hostilities, electric shocks, fires, drownings, work accidents, terror attacks, or large-scale disasters.</p><p><strong>Main outcomes and measures: </strong>Connectome-based predictive modeling (CPM), a whole-brain machine learning approach, was applied to resting-state and task-based fMRI data collected at 1 month post trauma. The primary outcome measure was PTSD symptom severity across the 3 time points, assessed with the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Secondary outcomes included Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (DSM-5) PTSD symptom clusters (intrusion, avoidance, negative alterations in mood and cognition, hyperarousal).</p><p><strong>Results: </strong>A total of 162 recent trauma survivors (mean [SD] age, 33.9 [11.5] years; 80 women [49.4%] and 82 men [50.6%]) were included at 1 month post trauma. Follow-up assessments were completed by 136 survivors (84.0%) at 6 months and by 133 survivors (82.1%) at 14 months post trauma. Among the 162 recent trauma survivors, CPM significantly predicted PTSD severity at 1 month (ρ = 0.18, P < .001) and 14 months (ρ = 0.24, P < .001) post trauma, but not at 6 months post trauma (ρ = 0.03, P = .39). The most predictive edges at 1 month included connections within and between the anterior default mode, motor sensory, and salience networks. These networks, with the additional contribution of the central executive and visual networks, were predictive of symptoms at 14 months. CPM predicted avoidance and negative alterations in mood and cognition at 1 month, but it predicted intrusion and hyperarousal symptoms at 14 months.</p><p><strong>Conclusions and relevance: </strong>In this prognostic study of recent trauma survivors, individual differences in large-scale neural networks shortly after trauma were associated with variability in PTSD symptom trajectories over the first year following trauma exposure. These findings suggest that CPM may identify potential targets for interventions.</p>","PeriodicalId":14694,"journal":{"name":"JAMA Network Open","volume":"8 3","pages":"e250331"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMA Network Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1001/jamanetworkopen.2025.0331","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Importance: The weak link between subjective symptom-based diagnostics for posttraumatic psychopathology and objective neurobiological indices hinders the development of effective personalized treatments.

Objective: To identify early neural networks associated with posttraumatic stress disorder (PTSD) development among recent trauma survivors.

Design, setting, and participants: This prognostic study used data from the Neurobehavioral Moderators of Posttraumatic Disease Trajectories (NMPTDT) large-scale longitudinal neuroimaging dataset of recent trauma survivors. The NMPTDT study was conducted from January 20, 2015, to March 11, 2020, and included adult civilians who were admitted to a general hospital emergency department in Israel and screened for early PTSD symptoms indicative of chronic PTSD risk. Enrolled participants completed comprehensive clinical assessments and functional magnetic resonance imaging (fMRI) scans at 1, 6, and 14 months post trauma. Data were analyzed from September 2023 to March 2024.

Exposure: Traumatic events included motor vehicle incidents, physical assaults, robberies, hostilities, electric shocks, fires, drownings, work accidents, terror attacks, or large-scale disasters.

Main outcomes and measures: Connectome-based predictive modeling (CPM), a whole-brain machine learning approach, was applied to resting-state and task-based fMRI data collected at 1 month post trauma. The primary outcome measure was PTSD symptom severity across the 3 time points, assessed with the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Secondary outcomes included Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (DSM-5) PTSD symptom clusters (intrusion, avoidance, negative alterations in mood and cognition, hyperarousal).

Results: A total of 162 recent trauma survivors (mean [SD] age, 33.9 [11.5] years; 80 women [49.4%] and 82 men [50.6%]) were included at 1 month post trauma. Follow-up assessments were completed by 136 survivors (84.0%) at 6 months and by 133 survivors (82.1%) at 14 months post trauma. Among the 162 recent trauma survivors, CPM significantly predicted PTSD severity at 1 month (ρ = 0.18, P < .001) and 14 months (ρ = 0.24, P < .001) post trauma, but not at 6 months post trauma (ρ = 0.03, P = .39). The most predictive edges at 1 month included connections within and between the anterior default mode, motor sensory, and salience networks. These networks, with the additional contribution of the central executive and visual networks, were predictive of symptoms at 14 months. CPM predicted avoidance and negative alterations in mood and cognition at 1 month, but it predicted intrusion and hyperarousal symptoms at 14 months.

Conclusions and relevance: In this prognostic study of recent trauma survivors, individual differences in large-scale neural networks shortly after trauma were associated with variability in PTSD symptom trajectories over the first year following trauma exposure. These findings suggest that CPM may identify potential targets for interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMA Network Open
JAMA Network Open Medicine-General Medicine
CiteScore
16.00
自引率
2.90%
发文量
2126
审稿时长
16 weeks
期刊介绍: JAMA Network Open, a member of the esteemed JAMA Network, stands as an international, peer-reviewed, open-access general medical journal.The publication is dedicated to disseminating research across various health disciplines and countries, encompassing clinical care, innovation in health care, health policy, and global health. JAMA Network Open caters to clinicians, investigators, and policymakers, providing a platform for valuable insights and advancements in the medical field. As part of the JAMA Network, a consortium of peer-reviewed general medical and specialty publications, JAMA Network Open contributes to the collective knowledge and understanding within the medical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信