Evaluation of enzyme activity predictions for variants of unknown significance in Arylsulfatase A.

IF 3.8 2区 生物学 Q2 GENETICS & HEREDITY
Shantanu Jain, Marena Trinidad, Thanh Binh Nguyen, Kaiya Jones, Santiago Diaz Neto, Fang Ge, Ailin Glagovsky, Cameron Jones, Giankaleb Moran, Boqi Wang, Kobra Rahimi, Sümeyra Zeynep Çalıcı, Luis R Cedillo, Silvia Berardelli, Buse Özden, Ken Chen, Panagiotis Katsonis, Amanda Williams, Olivier Lichtarge, Sadhna Rana, Swatantra Pradhan, Rajgopal Srinivasan, Rakshanda Sajeed, Dinesh Joshi, Eshel Faraggi, Robert Jernigan, Andrzej Kloczkowski, Jierui Xu, Zigang Song, Selen Özkan, Natàlia Padilla, Xavier de la Cruz, Rocio Acuna-Hidalgo, Andrea Grafmüller, Laura T Jiménez Barrón, Matteo Manfredi, Castrense Savojardo, Giulia Babbi, Pier Luigi Martelli, Rita Casadio, Yuanfei Sun, Shaowen Zhu, Yang Shen, Fabrizio Pucci, Marianne Rooman, Gabriel Cia, Daniele Raimondi, Pauline Hermans, Sofia Kwee, Ella Chen, Courtney Astore, Akash Kamandula, Vikas Pejaver, Rashika Ramola, Michelle Velyunskiy, Daniel Zeiberg, Reet Mishra, Teague Sterling, Jennifer L Goldstein, Jose Lugo-Martinez, Sufyan Kazi, Sindy Li, Kinsey Long, Steven E Brenner, Constantina Bakolitsa, Predrag Radivojac, Dean Suhr, Teryn Suhr, Wyatt T Clark
{"title":"Evaluation of enzyme activity predictions for variants of unknown significance in Arylsulfatase A.","authors":"Shantanu Jain, Marena Trinidad, Thanh Binh Nguyen, Kaiya Jones, Santiago Diaz Neto, Fang Ge, Ailin Glagovsky, Cameron Jones, Giankaleb Moran, Boqi Wang, Kobra Rahimi, Sümeyra Zeynep Çalıcı, Luis R Cedillo, Silvia Berardelli, Buse Özden, Ken Chen, Panagiotis Katsonis, Amanda Williams, Olivier Lichtarge, Sadhna Rana, Swatantra Pradhan, Rajgopal Srinivasan, Rakshanda Sajeed, Dinesh Joshi, Eshel Faraggi, Robert Jernigan, Andrzej Kloczkowski, Jierui Xu, Zigang Song, Selen Özkan, Natàlia Padilla, Xavier de la Cruz, Rocio Acuna-Hidalgo, Andrea Grafmüller, Laura T Jiménez Barrón, Matteo Manfredi, Castrense Savojardo, Giulia Babbi, Pier Luigi Martelli, Rita Casadio, Yuanfei Sun, Shaowen Zhu, Yang Shen, Fabrizio Pucci, Marianne Rooman, Gabriel Cia, Daniele Raimondi, Pauline Hermans, Sofia Kwee, Ella Chen, Courtney Astore, Akash Kamandula, Vikas Pejaver, Rashika Ramola, Michelle Velyunskiy, Daniel Zeiberg, Reet Mishra, Teague Sterling, Jennifer L Goldstein, Jose Lugo-Martinez, Sufyan Kazi, Sindy Li, Kinsey Long, Steven E Brenner, Constantina Bakolitsa, Predrag Radivojac, Dean Suhr, Teryn Suhr, Wyatt T Clark","doi":"10.1007/s00439-025-02731-3","DOIUrl":null,"url":null,"abstract":"<p><p>Continued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the Arylsulfatase A (ARSA) gene to assess the performance of community-submitted predictions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established and recently released models. Notably, a model developed by participants of a genetics and coding bootcamp, trained with standard machine-learning tools in Python, demonstrated superior performance among submissions. Furthermore, the study observed that state-of-the-art deep learning methods provided small but statistically significant improvement in predictive performance compared to less elaborate techniques. These findings underscore the utility of variant effect prediction, and the potential for models trained with modest resources to accurately classify VUS in genetic and clinical research.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-025-02731-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Continued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the Arylsulfatase A (ARSA) gene to assess the performance of community-submitted predictions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established and recently released models. Notably, a model developed by participants of a genetics and coding bootcamp, trained with standard machine-learning tools in Python, demonstrated superior performance among submissions. Furthermore, the study observed that state-of-the-art deep learning methods provided small but statistically significant improvement in predictive performance compared to less elaborate techniques. These findings underscore the utility of variant effect prediction, and the potential for models trained with modest resources to accurately classify VUS in genetic and clinical research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Genetics
Human Genetics 生物-遗传学
CiteScore
10.80
自引率
3.80%
发文量
94
审稿时长
1 months
期刊介绍: Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted. The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信