{"title":"Lactylation modification in cancer: mechanisms, functions, and therapeutic strategies.","authors":"Mengqi Lv, Yefei Huang, Yansu Chen, Kun Ding","doi":"10.1186/s40164-025-00622-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains the leading cause of mortality worldwide, and the emergence of drug resistance has made the identification of new therapeutic targets imperative. Lactate, traditionally viewed as a byproduct of glycolysis with limited ATP-producing capacity, has recently gained recognition as a critical signaling molecule. It plays a key role not only in cancer cell metabolism but also in shaping the tumor microenvironment (TME). Histone lysine lactylation, a newly identified post-translational modification, has been shown to influence a range of cellular processes in cancer. Current research focuses on the mechanisms and functions of histone lactylation in cancer, including its role in gene expression regulation, signal transduction, and protein synthesis. However, despite these advancements, there are still plenty of barriers in the quest to unravel the mechanisms of lactylation modification. The emergence of single-cell and spatial transcriptomics may offer valuable insights for selecting targets. This review provides a comprehensive summary of the mechanisms and the applications of lactylation modification in clinical settings. Through a detailed analysis, we identify the key challenges and limitations that exist in the current research landscape. These insights lay the groundwork for future studies by highlighting promising research directions.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"32"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00622-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains the leading cause of mortality worldwide, and the emergence of drug resistance has made the identification of new therapeutic targets imperative. Lactate, traditionally viewed as a byproduct of glycolysis with limited ATP-producing capacity, has recently gained recognition as a critical signaling molecule. It plays a key role not only in cancer cell metabolism but also in shaping the tumor microenvironment (TME). Histone lysine lactylation, a newly identified post-translational modification, has been shown to influence a range of cellular processes in cancer. Current research focuses on the mechanisms and functions of histone lactylation in cancer, including its role in gene expression regulation, signal transduction, and protein synthesis. However, despite these advancements, there are still plenty of barriers in the quest to unravel the mechanisms of lactylation modification. The emergence of single-cell and spatial transcriptomics may offer valuable insights for selecting targets. This review provides a comprehensive summary of the mechanisms and the applications of lactylation modification in clinical settings. Through a detailed analysis, we identify the key challenges and limitations that exist in the current research landscape. These insights lay the groundwork for future studies by highlighting promising research directions.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.