SLC7A5/E2F1/PTBP1/PKM2 axis mediates progression and therapy effect of triple-negative breast cancer through the crosstalk of amino acid metabolism and glycolysis pathway
Chengfei Jiang , Yingchen Qian , Xiaoming Bai , Shuangya Li , Liyuan Zhang , Yunxia Xie , Yifan Lu , Zhimin Lu , Bingjie Liu , Bing-Hua Jiang
{"title":"SLC7A5/E2F1/PTBP1/PKM2 axis mediates progression and therapy effect of triple-negative breast cancer through the crosstalk of amino acid metabolism and glycolysis pathway","authors":"Chengfei Jiang , Yingchen Qian , Xiaoming Bai , Shuangya Li , Liyuan Zhang , Yunxia Xie , Yifan Lu , Zhimin Lu , Bingjie Liu , Bing-Hua Jiang","doi":"10.1016/j.canlet.2025.217612","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC) is one of the most challenging malignancies with the highest mortality rates among women. TNBC relies on both amino acid metabolism and glycolysis to fuel its bioenergetic and biosynthetic demands. However, the potential crosstalk between these two metabolic pathways and its impact on TNBC progression remain largely unexplored. In this study, we observed that SLC7A5, a key amino acid transporter, was upregulated in TNBC and strongly associated with poor patient prognosis. We demonstrated that the elevated SLC7A5 expression activated the amino acid pathway and promoted cell proliferation, tumor growth, and therapeutic resistance by inducing the switch from PKM1 to PKM2 expression, thereby mediating the crosstalk between amino acid metabolism and glycolysis. We further identified that the upregulation of SLC7A5 resulted from miR-152 suppression, which regulates TNBC cellular function and tumor growth. In addition, the miR-152/SLC7A5 axis mediated the expression of PTBP1, which maintains the balance between PKM1 and PKM2, linking amino acid signaling with the glycolysis pathway. To further understand the mechanism of PTBP1 upregulation, we identified that E2F1 transcriptionally activated PTBP1 expression through direct binding at the seed site, while E2F1 expression was also induced by SLC7A5 in TNBC. This novel SLC7A5/E2F1/PTBP1 axis plays a crucial role in regulating the crosstalk between amino acid signaling and glycolysis in TNBC and is essential for TNBC progression and therapeutic effectiveness. Our findings offer valuable insights into the molecular mechanisms underlying TNBC metabolic reprogramming and highlight potential targets for future therapeutic interventions.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"617 ","pages":"Article 217612"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525001764","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) is one of the most challenging malignancies with the highest mortality rates among women. TNBC relies on both amino acid metabolism and glycolysis to fuel its bioenergetic and biosynthetic demands. However, the potential crosstalk between these two metabolic pathways and its impact on TNBC progression remain largely unexplored. In this study, we observed that SLC7A5, a key amino acid transporter, was upregulated in TNBC and strongly associated with poor patient prognosis. We demonstrated that the elevated SLC7A5 expression activated the amino acid pathway and promoted cell proliferation, tumor growth, and therapeutic resistance by inducing the switch from PKM1 to PKM2 expression, thereby mediating the crosstalk between amino acid metabolism and glycolysis. We further identified that the upregulation of SLC7A5 resulted from miR-152 suppression, which regulates TNBC cellular function and tumor growth. In addition, the miR-152/SLC7A5 axis mediated the expression of PTBP1, which maintains the balance between PKM1 and PKM2, linking amino acid signaling with the glycolysis pathway. To further understand the mechanism of PTBP1 upregulation, we identified that E2F1 transcriptionally activated PTBP1 expression through direct binding at the seed site, while E2F1 expression was also induced by SLC7A5 in TNBC. This novel SLC7A5/E2F1/PTBP1 axis plays a crucial role in regulating the crosstalk between amino acid signaling and glycolysis in TNBC and is essential for TNBC progression and therapeutic effectiveness. Our findings offer valuable insights into the molecular mechanisms underlying TNBC metabolic reprogramming and highlight potential targets for future therapeutic interventions.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.