Júlia López, Àngela Llop-Hernández, Sara Verdura, Eila Serrano-Hervás, Eva Martinez-Balibrea, Joaquim Bosch-Barrera, Eduard Teixidor, Eugeni López-Bonet, Begoña Martin-Castillo, Josep Sardanyés, Tomás Alarcón, Ruth Lupu, Elisabet Cuyàs, Javier A Menendez
{"title":"Mitochondrial priming and response to BH3 mimetics in \"one-two punch\" senogenic-senolytic strategies.","authors":"Júlia López, Àngela Llop-Hernández, Sara Verdura, Eila Serrano-Hervás, Eva Martinez-Balibrea, Joaquim Bosch-Barrera, Eduard Teixidor, Eugeni López-Bonet, Begoña Martin-Castillo, Josep Sardanyés, Tomás Alarcón, Ruth Lupu, Elisabet Cuyàs, Javier A Menendez","doi":"10.1038/s41420-025-02379-y","DOIUrl":null,"url":null,"abstract":"<p><p>A one-two punch sequential regimen of senescence-inducing agents followed by senolytic drugs has emerged as a novel therapeutic strategy in cancer. Unfortunately, cancer cells undergoing therapy-induced senescence (TIS) vary widely in their sensitivity to senotherapeutics, and companion diagnostics to predict the response of TIS cancer cells to a specific senolytic drug are lacking. Here, we hypothesized that the ability of the BH3 profiling assay to functionally measure the mitochondrial priming state-the proximity to the apoptotic threshold-and the dependencies on pro-survival BCL-2 family proteins can be exploited to inform the sensitivity of TIS cancer cells to BH3-mimetics. Replicative, mitotic, oxidative, and genotoxic forms of TIS were induced in p16-null/p53-proficient, BAX-deficient, and BRCA1-mutant cancer cells using mechanistically distinct TIS-inducing cancer therapeutics, including palbociclib, alisertib, doxorubicin, bleomycin, and olaparib. When the overall state of mitochondrial priming and competence was determined using activator peptides, the expected increase in overall mitochondrial priming was an exception rather than a generalizable feature across TIS phenotypes. A higher level of overall priming paralleled a higher sensitivity of competent TIS cancer cells to BCL-2/BCL-xL- and BCL-xL-targeted inhibitors when comparing TIS phenotypes among themselves. Unexpectedly, however, TIS cancer cells remained equally or even less overally primed than their proliferative counterparts. When sensitizing peptides were used to map dependencies on anti-apoptotic BCL-2 family proteins, competent TIS cancer cells appeared to share a dependency on BCL-xL. Furthermore, regardless of senescence-inducing therapeutic, stable/transient senescence acquisition, or genetic context, all TIS phenotypes shared a variable but significant senolytic response to the BCL-xL-selective BH3 mimetic A1331852. These findings may help to rethink the traditional assumption of the primed apoptotic landscape of TIS cancer cells. BCL-xL is a conserved anti-apoptotic effector of the TIS BCL2/BH3 interactome that can be exploited to maximize the efficacy of \"one-two punch\" senogenic-senolytic strategies.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"91"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02379-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A one-two punch sequential regimen of senescence-inducing agents followed by senolytic drugs has emerged as a novel therapeutic strategy in cancer. Unfortunately, cancer cells undergoing therapy-induced senescence (TIS) vary widely in their sensitivity to senotherapeutics, and companion diagnostics to predict the response of TIS cancer cells to a specific senolytic drug are lacking. Here, we hypothesized that the ability of the BH3 profiling assay to functionally measure the mitochondrial priming state-the proximity to the apoptotic threshold-and the dependencies on pro-survival BCL-2 family proteins can be exploited to inform the sensitivity of TIS cancer cells to BH3-mimetics. Replicative, mitotic, oxidative, and genotoxic forms of TIS were induced in p16-null/p53-proficient, BAX-deficient, and BRCA1-mutant cancer cells using mechanistically distinct TIS-inducing cancer therapeutics, including palbociclib, alisertib, doxorubicin, bleomycin, and olaparib. When the overall state of mitochondrial priming and competence was determined using activator peptides, the expected increase in overall mitochondrial priming was an exception rather than a generalizable feature across TIS phenotypes. A higher level of overall priming paralleled a higher sensitivity of competent TIS cancer cells to BCL-2/BCL-xL- and BCL-xL-targeted inhibitors when comparing TIS phenotypes among themselves. Unexpectedly, however, TIS cancer cells remained equally or even less overally primed than their proliferative counterparts. When sensitizing peptides were used to map dependencies on anti-apoptotic BCL-2 family proteins, competent TIS cancer cells appeared to share a dependency on BCL-xL. Furthermore, regardless of senescence-inducing therapeutic, stable/transient senescence acquisition, or genetic context, all TIS phenotypes shared a variable but significant senolytic response to the BCL-xL-selective BH3 mimetic A1331852. These findings may help to rethink the traditional assumption of the primed apoptotic landscape of TIS cancer cells. BCL-xL is a conserved anti-apoptotic effector of the TIS BCL2/BH3 interactome that can be exploited to maximize the efficacy of "one-two punch" senogenic-senolytic strategies.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.