A novel integrative multimodal classifier to enhance the diagnosis of Parkinson's disease.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xiaoyan Zhou, Luca Parisi, Wentao Huang, Yihan Zhang, Xiaoqun Huang, Mansour Youseffi, Farideh Javid, Renfei Ma
{"title":"A novel integrative multimodal classifier to enhance the diagnosis of Parkinson's disease.","authors":"Xiaoyan Zhou, Luca Parisi, Wentao Huang, Yihan Zhang, Xiaoqun Huang, Mansour Youseffi, Farideh Javid, Renfei Ma","doi":"10.1093/bib/bbaf088","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a complex, progressive neurodegenerative disorder with high heterogeneity, making early diagnosis difficult. Early detection and intervention are crucial for slowing PD progression. Understanding PD's diverse pathways and mechanisms is key to advancing knowledge. Recent advances in noninvasive imaging and multi-omics technologies have provided valuable insights into PD's underlying causes and biological processes. However, integrating these diverse data sources remains challenging, especially when deriving meaningful low-level features that can serve as diagnostic indicators. This study developed and validated a novel integrative, multimodal predictive model for detecting PD based on features derived from multimodal data, including hematological information, proteomics, RNA sequencing, metabolomics, and dopamine transporter scan imaging, sourced from the Parkinson's Progression Markers Initiative. Several model architectures were investigated and evaluated, including support vector machine, eXtreme Gradient Boosting, fully connected neural networks with concatenation and joint modeling (FCNN_C and FCNN_JM), and a multimodal encoder-based model with multi-head cross-attention (MMT_CA). The MMT_CA model demonstrated superior predictive performance, achieving a balanced classification accuracy of 97.7%, thus highlighting its ability to capture and leverage cross-modality inter-dependencies to aid predictive analytics. Furthermore, feature importance analysis using SHapley Additive exPlanations not only identified crucial diagnostic biomarkers to inform the predictive models in this study but also holds potential for future research aimed at integrated functional analyses of PD from a multi-omics perspective, ultimately revealing targets required for precision medicine approaches to aid treatment of PD aimed at slowing down its progression.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf088","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a complex, progressive neurodegenerative disorder with high heterogeneity, making early diagnosis difficult. Early detection and intervention are crucial for slowing PD progression. Understanding PD's diverse pathways and mechanisms is key to advancing knowledge. Recent advances in noninvasive imaging and multi-omics technologies have provided valuable insights into PD's underlying causes and biological processes. However, integrating these diverse data sources remains challenging, especially when deriving meaningful low-level features that can serve as diagnostic indicators. This study developed and validated a novel integrative, multimodal predictive model for detecting PD based on features derived from multimodal data, including hematological information, proteomics, RNA sequencing, metabolomics, and dopamine transporter scan imaging, sourced from the Parkinson's Progression Markers Initiative. Several model architectures were investigated and evaluated, including support vector machine, eXtreme Gradient Boosting, fully connected neural networks with concatenation and joint modeling (FCNN_C and FCNN_JM), and a multimodal encoder-based model with multi-head cross-attention (MMT_CA). The MMT_CA model demonstrated superior predictive performance, achieving a balanced classification accuracy of 97.7%, thus highlighting its ability to capture and leverage cross-modality inter-dependencies to aid predictive analytics. Furthermore, feature importance analysis using SHapley Additive exPlanations not only identified crucial diagnostic biomarkers to inform the predictive models in this study but also holds potential for future research aimed at integrated functional analyses of PD from a multi-omics perspective, ultimately revealing targets required for precision medicine approaches to aid treatment of PD aimed at slowing down its progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信