{"title":"TopoQA: a topological deep learning-based approach for protein complex structure interface quality assessment.","authors":"Bingqing Han, Yipeng Zhang, Longlong Li, Xinqi Gong, Kelin Xia","doi":"10.1093/bib/bbaf083","DOIUrl":null,"url":null,"abstract":"<p><p>Even with the significant advances of AlphaFold-Multimer (AF-Multimer) and AlphaFold3 (AF3) in protein complex structure prediction, their accuracy is still not comparable with monomer structure prediction. Efficient and effective quality assessment (QA) or estimation of model accuracy models that can evaluate the quality of the predicted protein-complexes without knowing their native structures are of key importance for protein structure generation and model selection. In this paper, we leverage persistent homology (PH) to capture the atomic-level topological information around residues and design a topological deep learning-based QA method, TopoQA, to assess the accuracy of protein complex interfaces. We integrate PH from topological data analysis into graph neural networks (GNNs) to characterize complex higher-order structures that GNNs might overlook, enhancing the learning of the relationship between the topological structure of complex interfaces and quality scores. Our TopoQA model is extensively validated based on the two most-widely used benchmark datasets, Docking Benchmark5.5 AF2 (DBM55-AF2) and Heterodimer-AF2 (HAF2), along with our newly constructed ABAG-AF3 dataset to facilitate comparisons with AF3. For all three datasets, TopoQA outperforms AF-Multimer-based AF2Rank and shows an advantage over AF3 in nearly half of the targets. In particular, in the DBM55-AF2 dataset, a ranking loss of 73.6% lower than AF-Multimer-based AF2Rank is obtained. Further, other than AF-Multimer and AF3, we have also extensively compared with nearly-all the state-of-the-art models (as far as we know), it has been found that our TopoQA can achieve the highest Top 10 Hit-rate on the DBM55-AF2 dataset and the lowest ranking loss on the HAF2 dataset. Ablation experiments show that our topological features significantly improve the model's performance. At the same time, our method also provides a new paradigm for protein structure representation learning.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf083","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Even with the significant advances of AlphaFold-Multimer (AF-Multimer) and AlphaFold3 (AF3) in protein complex structure prediction, their accuracy is still not comparable with monomer structure prediction. Efficient and effective quality assessment (QA) or estimation of model accuracy models that can evaluate the quality of the predicted protein-complexes without knowing their native structures are of key importance for protein structure generation and model selection. In this paper, we leverage persistent homology (PH) to capture the atomic-level topological information around residues and design a topological deep learning-based QA method, TopoQA, to assess the accuracy of protein complex interfaces. We integrate PH from topological data analysis into graph neural networks (GNNs) to characterize complex higher-order structures that GNNs might overlook, enhancing the learning of the relationship between the topological structure of complex interfaces and quality scores. Our TopoQA model is extensively validated based on the two most-widely used benchmark datasets, Docking Benchmark5.5 AF2 (DBM55-AF2) and Heterodimer-AF2 (HAF2), along with our newly constructed ABAG-AF3 dataset to facilitate comparisons with AF3. For all three datasets, TopoQA outperforms AF-Multimer-based AF2Rank and shows an advantage over AF3 in nearly half of the targets. In particular, in the DBM55-AF2 dataset, a ranking loss of 73.6% lower than AF-Multimer-based AF2Rank is obtained. Further, other than AF-Multimer and AF3, we have also extensively compared with nearly-all the state-of-the-art models (as far as we know), it has been found that our TopoQA can achieve the highest Top 10 Hit-rate on the DBM55-AF2 dataset and the lowest ranking loss on the HAF2 dataset. Ablation experiments show that our topological features significantly improve the model's performance. At the same time, our method also provides a new paradigm for protein structure representation learning.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.