{"title":"Constructing multilayer PPI networks based on homologous proteins and integrating multiple PageRank to identify essential proteins.","authors":"He Zhao, Huan Xu, Tao Wang, Guixia Liu","doi":"10.1186/s12859-025-06093-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Predicting and studying essential proteins not only helps to understand the fundamental requirements for cell survival and growth regulation mechanisms but also deepens our understanding of disease mechanisms and drives drug development. Existing methods for identifying essential proteins primarily focus on PPI networks within a single species, without fully exploiting interspecies homologous relationships. These homologous relationships connect proteins from different species, forming multilayer PPI networks. Some methods only construct interlayer edges based on homologous relationships between two species, without incorporating appropriate biological attributes to assess the biological significance of these edges. Furthermore, homologous proteins are often highly conserved across multiple species, and expanding homologous relationships to more species allows for a more accurate assessment of interlayer edge importance.</p><p><strong>Results: </strong>To address these issues, we propose a novel model, MLPR, which constructs a multilayer PPI network based on homologous proteins and integrates multiple PageRank algorithms to identify essential proteins. This study combines homologous protein data from three species to construct interlayer transition matrices and assigns weights to interlayer edges by integrating the biological attributes of homologous proteins and cross-species GO annotations. The MLPR model uses multiple PageRank methods to comprehensively consider homologous relationships across species and designs three key parameters to find the optimal combination that balances random walks within layers, global jumps, interlayer biases, and interspecies homologous relationships.</p><p><strong>Conclusions: </strong>Experimental results show that MLPR outperforms other state-of-the-art methods in terms of performance. Ablation experiments further validate that integrating homologous relationships across three species effectively enhances the overall performance of MLPR and demonstrates the advantages of the multiple PageRank model in identifying essential proteins.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"80"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892321/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06093-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Predicting and studying essential proteins not only helps to understand the fundamental requirements for cell survival and growth regulation mechanisms but also deepens our understanding of disease mechanisms and drives drug development. Existing methods for identifying essential proteins primarily focus on PPI networks within a single species, without fully exploiting interspecies homologous relationships. These homologous relationships connect proteins from different species, forming multilayer PPI networks. Some methods only construct interlayer edges based on homologous relationships between two species, without incorporating appropriate biological attributes to assess the biological significance of these edges. Furthermore, homologous proteins are often highly conserved across multiple species, and expanding homologous relationships to more species allows for a more accurate assessment of interlayer edge importance.
Results: To address these issues, we propose a novel model, MLPR, which constructs a multilayer PPI network based on homologous proteins and integrates multiple PageRank algorithms to identify essential proteins. This study combines homologous protein data from three species to construct interlayer transition matrices and assigns weights to interlayer edges by integrating the biological attributes of homologous proteins and cross-species GO annotations. The MLPR model uses multiple PageRank methods to comprehensively consider homologous relationships across species and designs three key parameters to find the optimal combination that balances random walks within layers, global jumps, interlayer biases, and interspecies homologous relationships.
Conclusions: Experimental results show that MLPR outperforms other state-of-the-art methods in terms of performance. Ablation experiments further validate that integrating homologous relationships across three species effectively enhances the overall performance of MLPR and demonstrates the advantages of the multiple PageRank model in identifying essential proteins.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.