Learning directed acyclic graphs for ligands and receptors based on spatially resolved transcriptomic data of ovarian cancer.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Shrabanti Chowdhury, Sammy Ferri-Borgogno, Peng Yang, Wenyi Wang, Jie Peng, Samuel C Mok, Pei Wang
{"title":"Learning directed acyclic graphs for ligands and receptors based on spatially resolved transcriptomic data of ovarian cancer.","authors":"Shrabanti Chowdhury, Sammy Ferri-Borgogno, Peng Yang, Wenyi Wang, Jie Peng, Samuel C Mok, Pei Wang","doi":"10.1093/bib/bbaf085","DOIUrl":null,"url":null,"abstract":"<p><p>To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell-cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ-omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand-receptor signaling networks that power cell-cell communication. In this paper, we propose a novel statistical method, LRnetST, to characterize the ligand-receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand-receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand-receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf085","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell-cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ-omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand-receptor signaling networks that power cell-cell communication. In this paper, we propose a novel statistical method, LRnetST, to characterize the ligand-receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand-receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand-receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信