Jurairat Chittrakanwong, Ruixi Chen, Junzhou Wu, Michael S Demott, Jingjing Sun, Kamonwan Phatinuwat, Juthamas Jaroensuk, Sopapan Atichartpongkul, Skorn Mongkolsuk, Thomas Begley, Peter C Dedon, Mayuree Fuangthong
{"title":"5-Methyluridine is Ubiquitous in Pseudomonas aeruginosa tRNA and Modulates Antimicrobial Resistance and Virulence.","authors":"Jurairat Chittrakanwong, Ruixi Chen, Junzhou Wu, Michael S Demott, Jingjing Sun, Kamonwan Phatinuwat, Juthamas Jaroensuk, Sopapan Atichartpongkul, Skorn Mongkolsuk, Thomas Begley, Peter C Dedon, Mayuree Fuangthong","doi":"10.1016/j.jmb.2025.169020","DOIUrl":null,"url":null,"abstract":"<p><p>Building on decades of work in characterizing the dozens of RNA modifications in the microbial epitranscriptome, recent advances in analytical technology and genetics have revealed systems-level functions for many tRNA modifications. The tRNA (uracil-5-)-methyltransferase TrmA and its product, 5-methyl uridine (m<sup>5</sup>U) at position 54 in the T-loop, however, has not been linked to a specific phenotype. Here, we defined the functional and biological roles of TrmA in Pseudomonas aeruginosa (PA14), a major multidrug-resistant pathogen. Surprisingly, though TrmA was found to site-specifically catalyze m<sup>5</sup>U54 on all PA14 tRNAs, loss of TrmA had no effect on the levels of any of 36 tRNA modifications except m<sup>5</sup>U and had minimal effects on multiple phenotypic parameters, including growth rate, morphology, motility, and biofilm formation. However, loss of TrmA conferred a striking polymyxin antibiotic resistance. mRNA and tRNA profiling and proteomics analyses revealed that TrmA regulates the expression of codon-biased gene families at the level of translation, including components of a type III secretion system (T3SS). Loss of TrmA upregulated T3SS, leading to increased macrophage IL-1β in bacterial challenge tests. Altogether, these results revealed novel biological functions of TrmA and its roles in modulating gene expression at multiple levels in P. aeruginosa.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169020"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Building on decades of work in characterizing the dozens of RNA modifications in the microbial epitranscriptome, recent advances in analytical technology and genetics have revealed systems-level functions for many tRNA modifications. The tRNA (uracil-5-)-methyltransferase TrmA and its product, 5-methyl uridine (m5U) at position 54 in the T-loop, however, has not been linked to a specific phenotype. Here, we defined the functional and biological roles of TrmA in Pseudomonas aeruginosa (PA14), a major multidrug-resistant pathogen. Surprisingly, though TrmA was found to site-specifically catalyze m5U54 on all PA14 tRNAs, loss of TrmA had no effect on the levels of any of 36 tRNA modifications except m5U and had minimal effects on multiple phenotypic parameters, including growth rate, morphology, motility, and biofilm formation. However, loss of TrmA conferred a striking polymyxin antibiotic resistance. mRNA and tRNA profiling and proteomics analyses revealed that TrmA regulates the expression of codon-biased gene families at the level of translation, including components of a type III secretion system (T3SS). Loss of TrmA upregulated T3SS, leading to increased macrophage IL-1β in bacterial challenge tests. Altogether, these results revealed novel biological functions of TrmA and its roles in modulating gene expression at multiple levels in P. aeruginosa.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.