Ceereena Ubaida-Mohien, Ruin Moaddel, Sally Spendiff, Norah J MacMillan, Marie-Eve Filion, Jose A Morais, Julián Candia, Liam F Fitzgerald, Tanja Taivassalo, Paul M Coen, Luigi Ferrucci, Russell T Hepple
{"title":"Serum Proteomic and Metabolomic Signatures of High Versus Low Physical Function in Octogenarians.","authors":"Ceereena Ubaida-Mohien, Ruin Moaddel, Sally Spendiff, Norah J MacMillan, Marie-Eve Filion, Jose A Morais, Julián Candia, Liam F Fitzgerald, Tanja Taivassalo, Paul M Coen, Luigi Ferrucci, Russell T Hepple","doi":"10.1111/acel.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Physical function declines with aging, yet there is considerable heterogeneity, with some individuals declining very slowly while others experience accelerated functional decline. To gain insight into mechanisms promoting high physical function with aging, we performed proteomics, targeted metabolomics, and targeted kynurenine-focused metabolomic analyses on serum specimens from three groups of octogenarians: High-functioning master athletes (HF, n = 16), healthy normal-functioning non-athletes (NF, n = 12), and lower functioning non-athletes (LF, n = 11). Higher performance status was associated with evidence consistent with: Lower levels of circulating proinflammatory markers, as well as unperturbed tryptophan metabolism, with the normal function of the kynurenic pathway; higher circulating levels of lysophosphatidylcholines that have been previously associated with better mitochondrial oxidative capacity; lower activity of the integrated stress response; lower levels of circulating SASP protein members; and lower levels of proteins that reflect neurodegeneration/denervation. Extending the observations of previous studies focused on the biomarkers of aging that predict poor function, our findings show that many of the same biomarkers associated with poor function exhibit attenuated changes in those who maintain a high function. Because of the cross-sectional nature of this study, results should be interpreted with caution, and bidirectional causality, where physical activity behavior is both a cause and outcome of differences in the biomarker changes, remains a possible interpretation.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70002"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Physical function declines with aging, yet there is considerable heterogeneity, with some individuals declining very slowly while others experience accelerated functional decline. To gain insight into mechanisms promoting high physical function with aging, we performed proteomics, targeted metabolomics, and targeted kynurenine-focused metabolomic analyses on serum specimens from three groups of octogenarians: High-functioning master athletes (HF, n = 16), healthy normal-functioning non-athletes (NF, n = 12), and lower functioning non-athletes (LF, n = 11). Higher performance status was associated with evidence consistent with: Lower levels of circulating proinflammatory markers, as well as unperturbed tryptophan metabolism, with the normal function of the kynurenic pathway; higher circulating levels of lysophosphatidylcholines that have been previously associated with better mitochondrial oxidative capacity; lower activity of the integrated stress response; lower levels of circulating SASP protein members; and lower levels of proteins that reflect neurodegeneration/denervation. Extending the observations of previous studies focused on the biomarkers of aging that predict poor function, our findings show that many of the same biomarkers associated with poor function exhibit attenuated changes in those who maintain a high function. Because of the cross-sectional nature of this study, results should be interpreted with caution, and bidirectional causality, where physical activity behavior is both a cause and outcome of differences in the biomarker changes, remains a possible interpretation.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.