Wind power generation prediction using LSTM model optimized by sparrow search algorithm and firefly algorithm

Q2 Energy
Wenjing Zhang, Hongjing Yan, Lili Xiang, Linling Shao
{"title":"Wind power generation prediction using LSTM model optimized by sparrow search algorithm and firefly algorithm","authors":"Wenjing Zhang,&nbsp;Hongjing Yan,&nbsp;Lili Xiang,&nbsp;Linling Shao","doi":"10.1186/s42162-025-00492-x","DOIUrl":null,"url":null,"abstract":"<div><p>As an important renewable energy source, wind power generation is highly stochastic and uncertain due to various environmental factors affecting its output. To raise the accuracy of wind power generation prediction, a bidirectional long short-term memory network combination model based on sparrow search algorithm and firefly algorithm optimization is designed. The model first employs a bidirectional long short-term memory network to capture the long-term dependency features of time series, and uses random forests for nonlinear modeling and feature selection. Then, the sparrow search algorithm and firefly algorithm are combined to optimize the hyperparameter configuration, improving the predictive performance and global search ability of the model. The findings denote that the accuracy of the designed model reaches 98.5%, with a mean square error as low as 0.005 and a prediction time as short as 0.18 s. The simulation analysis results show that the predicted values of the developed model almost coincide with the actual values, with small errors. The research outcomes denote that the optimized model greatly raises the accuracy and efficiency of wind power generation prediction, and has good application prospects.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00492-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00492-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

As an important renewable energy source, wind power generation is highly stochastic and uncertain due to various environmental factors affecting its output. To raise the accuracy of wind power generation prediction, a bidirectional long short-term memory network combination model based on sparrow search algorithm and firefly algorithm optimization is designed. The model first employs a bidirectional long short-term memory network to capture the long-term dependency features of time series, and uses random forests for nonlinear modeling and feature selection. Then, the sparrow search algorithm and firefly algorithm are combined to optimize the hyperparameter configuration, improving the predictive performance and global search ability of the model. The findings denote that the accuracy of the designed model reaches 98.5%, with a mean square error as low as 0.005 and a prediction time as short as 0.18 s. The simulation analysis results show that the predicted values of the developed model almost coincide with the actual values, with small errors. The research outcomes denote that the optimized model greatly raises the accuracy and efficiency of wind power generation prediction, and has good application prospects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信