Real-time monitoring and energy consumption management strategy of cold chain logistics based on the internet of things

Q2 Energy
Kang Wang, Ning Du
{"title":"Real-time monitoring and energy consumption management strategy of cold chain logistics based on the internet of things","authors":"Kang Wang,&nbsp;Ning Du","doi":"10.1186/s42162-025-00493-w","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of the cold chain logistics industry, its high energy consumption and low operational efficiency have become increasingly prominent, seriously restricting the sustainable development of the industry. This study focuses on this and proposes a real-time monitoring system for cold chain logistics based on the Internet of Things. It combines the long short-term memory network (LSTM) and the particle swarm optimization (PSO) algorithm to build an energy consumption management strategy. Through the distributed system architecture design, a variety of data transmission protocols are used to ensure real-time and stable data collection and transmission, and to achieve accurate monitoring of key environmental factors in the transportation and storage of cold chain logistics. The experiment was carried out in a simulated cold chain logistics scenario. The data set covers multiple types of sensor data and is compared with multiple baseline models. The results show that compared with the traditional cold chain logistics system, this system significantly improves energy efficiency, reduces energy consumption by about 20%, increases temperature and humidity control accuracy to 94% respectively, improves transportation efficiency, and shortens transportation time by 8.33%. At the same time, the combination of LSTM and PSO algorithms optimizes energy consumption prediction and equipment scheduling, and the equipment group collaborative optimization strategy enhances system stability. This study confirms that the real-time monitoring and energy consumption management strategy based on the Internet of Things can effectively improve the economic and environmental benefits of the cold chain logistics system.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00493-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00493-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of the cold chain logistics industry, its high energy consumption and low operational efficiency have become increasingly prominent, seriously restricting the sustainable development of the industry. This study focuses on this and proposes a real-time monitoring system for cold chain logistics based on the Internet of Things. It combines the long short-term memory network (LSTM) and the particle swarm optimization (PSO) algorithm to build an energy consumption management strategy. Through the distributed system architecture design, a variety of data transmission protocols are used to ensure real-time and stable data collection and transmission, and to achieve accurate monitoring of key environmental factors in the transportation and storage of cold chain logistics. The experiment was carried out in a simulated cold chain logistics scenario. The data set covers multiple types of sensor data and is compared with multiple baseline models. The results show that compared with the traditional cold chain logistics system, this system significantly improves energy efficiency, reduces energy consumption by about 20%, increases temperature and humidity control accuracy to 94% respectively, improves transportation efficiency, and shortens transportation time by 8.33%. At the same time, the combination of LSTM and PSO algorithms optimizes energy consumption prediction and equipment scheduling, and the equipment group collaborative optimization strategy enhances system stability. This study confirms that the real-time monitoring and energy consumption management strategy based on the Internet of Things can effectively improve the economic and environmental benefits of the cold chain logistics system.

基于物联网的冷链物流实时监控与能耗管理策略
随着冷链物流行业的快速发展,其能耗高、运行效率低的问题日益突出,严重制约着行业的可持续发展。本研究针对这一点,提出了一种基于物联网的冷链物流实时监控系统。它将长短期记忆网络(LSTM)和粒子群优化(PSO)算法相结合,构建了一种能量消耗管理策略。通过分布式系统架构设计,采用多种数据传输协议,保证数据采集和传输的实时性和稳定性,实现对冷链物流运输和仓储过程中关键环境因素的精准监控。实验在模拟冷链物流场景中进行。该数据集涵盖多种类型的传感器数据,并与多个基线模型进行比较。结果表明,与传统冷链物流系统相比,该系统显著提高了能源效率,能耗降低约20%,温度和湿度控制精度分别提高至94%,运输效率提高,运输时间缩短8.33%。同时,LSTM与粒子群算法的结合优化了能耗预测和设备调度,设备群协同优化策略增强了系统稳定性。本研究证实了基于物联网的实时监控和能耗管理策略可以有效提高冷链物流系统的经济效益和环境效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信