Real-time monitoring and energy consumption management strategy of cold chain logistics based on the internet of things

Q2 Energy
Kang Wang, Ning Du
{"title":"Real-time monitoring and energy consumption management strategy of cold chain logistics based on the internet of things","authors":"Kang Wang,&nbsp;Ning Du","doi":"10.1186/s42162-025-00493-w","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of the cold chain logistics industry, its high energy consumption and low operational efficiency have become increasingly prominent, seriously restricting the sustainable development of the industry. This study focuses on this and proposes a real-time monitoring system for cold chain logistics based on the Internet of Things. It combines the long short-term memory network (LSTM) and the particle swarm optimization (PSO) algorithm to build an energy consumption management strategy. Through the distributed system architecture design, a variety of data transmission protocols are used to ensure real-time and stable data collection and transmission, and to achieve accurate monitoring of key environmental factors in the transportation and storage of cold chain logistics. The experiment was carried out in a simulated cold chain logistics scenario. The data set covers multiple types of sensor data and is compared with multiple baseline models. The results show that compared with the traditional cold chain logistics system, this system significantly improves energy efficiency, reduces energy consumption by about 20%, increases temperature and humidity control accuracy to 94% respectively, improves transportation efficiency, and shortens transportation time by 8.33%. At the same time, the combination of LSTM and PSO algorithms optimizes energy consumption prediction and equipment scheduling, and the equipment group collaborative optimization strategy enhances system stability. This study confirms that the real-time monitoring and energy consumption management strategy based on the Internet of Things can effectively improve the economic and environmental benefits of the cold chain logistics system.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00493-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00493-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of the cold chain logistics industry, its high energy consumption and low operational efficiency have become increasingly prominent, seriously restricting the sustainable development of the industry. This study focuses on this and proposes a real-time monitoring system for cold chain logistics based on the Internet of Things. It combines the long short-term memory network (LSTM) and the particle swarm optimization (PSO) algorithm to build an energy consumption management strategy. Through the distributed system architecture design, a variety of data transmission protocols are used to ensure real-time and stable data collection and transmission, and to achieve accurate monitoring of key environmental factors in the transportation and storage of cold chain logistics. The experiment was carried out in a simulated cold chain logistics scenario. The data set covers multiple types of sensor data and is compared with multiple baseline models. The results show that compared with the traditional cold chain logistics system, this system significantly improves energy efficiency, reduces energy consumption by about 20%, increases temperature and humidity control accuracy to 94% respectively, improves transportation efficiency, and shortens transportation time by 8.33%. At the same time, the combination of LSTM and PSO algorithms optimizes energy consumption prediction and equipment scheduling, and the equipment group collaborative optimization strategy enhances system stability. This study confirms that the real-time monitoring and energy consumption management strategy based on the Internet of Things can effectively improve the economic and environmental benefits of the cold chain logistics system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信