Effect of High-Temperature Annealing in Oxygen on the Properties of Hafnium Oxide Films Grown by Atomic Layer Deposition

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. V. Bulyarskiy, K. I. Litvinova, A. A. Shibalova
{"title":"Effect of High-Temperature Annealing in Oxygen on the Properties of Hafnium Oxide Films Grown by Atomic Layer Deposition","authors":"S. V. Bulyarskiy,&nbsp;K. I. Litvinova,&nbsp;A. A. Shibalova","doi":"10.1134/S0020168524700821","DOIUrl":null,"url":null,"abstract":"<p>We have studied the effect of pulse annealing on the crystallization of hafnium oxide films grown by atomic layer deposition and constructed a model for the crystallization process. Experimental data and simulation results suggest that the crystallization mechanism is rather complex and depends on temperature. At annealing temperatures in the range 600–700°C, the crystallization process follows a diffusion mechanism: oxygen diffuses into the film and interacts with oxygen vacancies and excess hafnium, resulting in nanocrystal growth. At higher temperatures, the activation energy for the crystallization process increases and exceeds the activation energy for oxygen diffusion. We assume that the crystallization process can involve double ionized oxygen vacancies.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 5","pages":"612 - 619"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524700821","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We have studied the effect of pulse annealing on the crystallization of hafnium oxide films grown by atomic layer deposition and constructed a model for the crystallization process. Experimental data and simulation results suggest that the crystallization mechanism is rather complex and depends on temperature. At annealing temperatures in the range 600–700°C, the crystallization process follows a diffusion mechanism: oxygen diffuses into the film and interacts with oxygen vacancies and excess hafnium, resulting in nanocrystal growth. At higher temperatures, the activation energy for the crystallization process increases and exceeds the activation energy for oxygen diffusion. We assume that the crystallization process can involve double ionized oxygen vacancies.

Abstract Image

氧中高温退火对原子层沉积法生长的氧化铪薄膜性能的影响
研究了脉冲退火对原子层沉积法生长的氧化铪薄膜结晶过程的影响,并建立了结晶过程模型。实验数据和模拟结果表明,结晶机理相当复杂,且与温度有关。在600-700℃的退火温度下,结晶过程遵循扩散机制:氧扩散到薄膜中,并与氧空位和过量的铪相互作用,导致纳米晶体生长。在较高的温度下,结晶过程的活化能增加并超过氧扩散的活化能。我们假设结晶过程可能涉及双电离氧空位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Materials
Inorganic Materials 工程技术-材料科学:综合
CiteScore
1.40
自引率
25.00%
发文量
80
审稿时长
3-6 weeks
期刊介绍: Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信