Do as the Romans Do: Location Imitation-Based Edge Task Offloading for Privacy Protection

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiahao Zhu;Lu Zhao;Jian Zhou;Hui Cai;Fu Xiao
{"title":"Do as the Romans Do: Location Imitation-Based Edge Task Offloading for Privacy Protection","authors":"Jiahao Zhu;Lu Zhao;Jian Zhou;Hui Cai;Fu Xiao","doi":"10.1109/TMC.2024.3509418","DOIUrl":null,"url":null,"abstract":"In edge computing, a user prefers offloading his/her task to nearby edge servers to maximize the offloading utility. However, this inevitably exposes the user's location privacy information when suffering from the side-channel attacks based on offloading decision behaviors and Received Signal Strength Indicators (RSSI). Existing works only consider the scenario with one untrusted edge server or defend only against one of the attacks. In this paper, we first study the edge task offloading problem with comprehensive privacy protection against these side-channel attacks from multiple edge servers. To address this problem while ensuring satisfactory offloading utility, we develop a <underline>L</u>ocation <underline>I</u>mitation-based Edge <underline>T</u>ask <underline>O</u>ffloading approach <italic>LITO</i>. Specifically, we first determine a suitable perturbation region centered at the user's real location for a balance between offloading utility and privacy protection, and then propose a modified Laplace mechanism to generate a fake location meeting geo-indistinguishability within the region. Subsequently, to mislead the side-channel attacks to the fake location, we design an approximate algorithm and a transmit power control strategy to imitate the offloading decisions and RSSIs at the fake location, respectively. Theoretical analysis and experimental evaluations demonstrate the performance of <italic>LITO</i> in improving privacy protection and guaranteeing offloading utility.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 4","pages":"3456-3472"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10771999/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In edge computing, a user prefers offloading his/her task to nearby edge servers to maximize the offloading utility. However, this inevitably exposes the user's location privacy information when suffering from the side-channel attacks based on offloading decision behaviors and Received Signal Strength Indicators (RSSI). Existing works only consider the scenario with one untrusted edge server or defend only against one of the attacks. In this paper, we first study the edge task offloading problem with comprehensive privacy protection against these side-channel attacks from multiple edge servers. To address this problem while ensuring satisfactory offloading utility, we develop a Location Imitation-based Edge Task Offloading approach LITO. Specifically, we first determine a suitable perturbation region centered at the user's real location for a balance between offloading utility and privacy protection, and then propose a modified Laplace mechanism to generate a fake location meeting geo-indistinguishability within the region. Subsequently, to mislead the side-channel attacks to the fake location, we design an approximate algorithm and a transmit power control strategy to imitate the offloading decisions and RSSIs at the fake location, respectively. Theoretical analysis and experimental evaluations demonstrate the performance of LITO in improving privacy protection and guaranteeing offloading utility.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信