Uni-DPM: Unifying Self-Supervised Monocular Depth, Pose, and Object Motion Estimation With a Shared Representation

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Guanghui Wu;Lili Chen;Zengping Chen
{"title":"Uni-DPM: Unifying Self-Supervised Monocular Depth, Pose, and Object Motion Estimation With a Shared Representation","authors":"Guanghui Wu;Lili Chen;Zengping Chen","doi":"10.1109/TMM.2024.3521846","DOIUrl":null,"url":null,"abstract":"Self-supervised monocular depth estimation has been widely studied for 3D perception, as it can infer depth, pose, and object motion from monocular videos. However, existing single-view and multi-view methods employ separate networks to learn specific representations for these different tasks. This not only results in a cumbersome model architecture but also limits the representation capacity. In this paper, we revisit previous methods and have the following insights: (1) these three tasks are reciprocal and all depend on matching information and (2) different representations carry complementary information. Based on these insights, we propose Uni-DPM, a compact self-supervised framework to complete these three tasks with a shared representation. Specifically, we introduce an U-net-like model to synchronously complete multiple tasks by leveraging their common dependence on matching information, and iteratively refine the predictions by utilizing the reciprocity among tasks. Furthermore, we design a shared Appearance-Matching-Temporal (AMT) representation for these three tasks by exploiting the complementarity among different types of information. In addition, our Uni-DPM is scalable to downstream tasks, including scene flow, optical flow, and motion segmentation. Comparative experiments demonstrate the competitiveness of our Uni-DPM on these tasks, while ablation experiments also verify our insights.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1498-1511"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836810/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-supervised monocular depth estimation has been widely studied for 3D perception, as it can infer depth, pose, and object motion from monocular videos. However, existing single-view and multi-view methods employ separate networks to learn specific representations for these different tasks. This not only results in a cumbersome model architecture but also limits the representation capacity. In this paper, we revisit previous methods and have the following insights: (1) these three tasks are reciprocal and all depend on matching information and (2) different representations carry complementary information. Based on these insights, we propose Uni-DPM, a compact self-supervised framework to complete these three tasks with a shared representation. Specifically, we introduce an U-net-like model to synchronously complete multiple tasks by leveraging their common dependence on matching information, and iteratively refine the predictions by utilizing the reciprocity among tasks. Furthermore, we design a shared Appearance-Matching-Temporal (AMT) representation for these three tasks by exploiting the complementarity among different types of information. In addition, our Uni-DPM is scalable to downstream tasks, including scene flow, optical flow, and motion segmentation. Comparative experiments demonstrate the competitiveness of our Uni-DPM on these tasks, while ablation experiments also verify our insights.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信