Augment One With Others: Generalizing to Unforeseen Variations for Visual Tracking

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jinpu Zhang;Ziwen Li;Ruonan Wei;Yuehuan Wang
{"title":"Augment One With Others: Generalizing to Unforeseen Variations for Visual Tracking","authors":"Jinpu Zhang;Ziwen Li;Ruonan Wei;Yuehuan Wang","doi":"10.1109/TMM.2024.3521842","DOIUrl":null,"url":null,"abstract":"Unforeseen appearance variation is a challenging factor for visual tracking. This paper provides a novel solution from semantic data augmentation, which facilitates offline training of trackers for better generalization. We utilize existing samples to obtain knowledge to augment another in terms of diversity and hardness. First, we propose that the similarity matching space in Siamese-like models has class-agnostic transferability. Based on this, we design the Latent Augmentation (LaAug) to transfer relevant variations and suppress irrelevant ones between training similarity embeddings of different classes. Thus the model can generalize across a more diverse semantic distribution. Then, we propose the Semantic Interaction Mix (SIMix), which interacts moments between different feature samples to contaminate structure and texture attributes and retain other semantic attributes. SIMix simulates the occlusion and complements the training distribution with hard cases. The mixed features with adversarial perturbations can empirically enable the model against external environmental disturbances. Experiments on six challenging benchmarks demonstrate that three representative tracking models, i.e., SiamBAN, TransT and OSTrack, can be consistently improved by incorporating the proposed methods without extra parameters and inference cost.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1461-1474"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814671/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Unforeseen appearance variation is a challenging factor for visual tracking. This paper provides a novel solution from semantic data augmentation, which facilitates offline training of trackers for better generalization. We utilize existing samples to obtain knowledge to augment another in terms of diversity and hardness. First, we propose that the similarity matching space in Siamese-like models has class-agnostic transferability. Based on this, we design the Latent Augmentation (LaAug) to transfer relevant variations and suppress irrelevant ones between training similarity embeddings of different classes. Thus the model can generalize across a more diverse semantic distribution. Then, we propose the Semantic Interaction Mix (SIMix), which interacts moments between different feature samples to contaminate structure and texture attributes and retain other semantic attributes. SIMix simulates the occlusion and complements the training distribution with hard cases. The mixed features with adversarial perturbations can empirically enable the model against external environmental disturbances. Experiments on six challenging benchmarks demonstrate that three representative tracking models, i.e., SiamBAN, TransT and OSTrack, can be consistently improved by incorporating the proposed methods without extra parameters and inference cost.
用他人增强自己:归纳视觉跟踪中不可预见的变化
不可预见的外观变化是视觉跟踪的一个挑战因素。本文从语义数据增强的角度提出了一种新的解决方案,使跟踪器的离线训练更容易实现更好的泛化。我们利用现有的样本来获得知识,以增加另一个方面的多样性和硬度。首先,我们提出了类暹罗模型的相似性匹配空间具有类不可知的可转移性。在此基础上,我们设计了潜在增强算法(Latent Augmentation, LaAug),在不同类别的训练相似嵌入之间转移相关变量,抑制不相关变量。因此,该模型可以泛化到更多样化的语义分布。然后,我们提出了语义交互混合(Semantic Interaction Mix, SIMix),它在不同特征样本之间进行交互,以污染结构和纹理属性并保留其他语义属性。SIMix模拟闭塞和补充训练分布与硬案例。具有对抗性扰动的混合特征可以经验地使模型免受外部环境干扰。在6个具有挑战性的基准测试上的实验表明,在不增加额外参数和推理成本的情况下,结合所提出的方法可以持续改进SiamBAN、TransT和OSTrack三个具有代表性的跟踪模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信