Mobile Tile-Based 360$^\circ$∘ Video Multicast With Cybersickness Alleviation

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chiao-Wen Lin;De-Nian Yang;Wanjiun Liao
{"title":"Mobile Tile-Based 360$^\\circ$∘ Video Multicast With Cybersickness Alleviation","authors":"Chiao-Wen Lin;De-Nian Yang;Wanjiun Liao","doi":"10.1109/TMC.2024.3514852","DOIUrl":null,"url":null,"abstract":"Virtual reality (VR) imaging is 360°, which requires a large bandwidth for video transmission. To address this challenge, tile-based streaming has been proposed to deliver only the focused part of the video instead of the entire one. However, the impact of cybersickness, akin to motion sickness, on tile selection in VR has not been explored. In this paper, we investigate Multi-user Tile Streaming with Cybersickness Control (MTSCC) in an adaptive 360<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula> video streaming system with multicast and cybersickness alleviation. We propose a novel <inline-formula><tex-math>$m^{2}$</tex-math></inline-formula>-competitive online algorithm that utilizes Individual Sickness Indicator (ISI) and Bitrate Restriction Indicator (BRI) to evaluate user cybersickness tendency and network bandwidth efficiency. Moreover, we introduce the Video Loss Indicator (VLI) and Quality Variance Indicator (QVI) to assess video quality loss and quality difference between tiles. We also propose a multi-armed bandit (MAB) algorithm with confidence bound-based reward (video quality) and cost (cybersickness) estimation. The algorithm learns the weighting factor of each user's cost to slow down cybersickness accumulation for users with high cybersickness tendencies. We prove that the algorithm converges to an optimal solution over time. According to simulation with real network settings, our proposed algorithms outperform baselines in terms of video quality and cybersickness accumulation.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 4","pages":"3423-3440"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10789195/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual reality (VR) imaging is 360°, which requires a large bandwidth for video transmission. To address this challenge, tile-based streaming has been proposed to deliver only the focused part of the video instead of the entire one. However, the impact of cybersickness, akin to motion sickness, on tile selection in VR has not been explored. In this paper, we investigate Multi-user Tile Streaming with Cybersickness Control (MTSCC) in an adaptive 360$^\circ$ video streaming system with multicast and cybersickness alleviation. We propose a novel $m^{2}$-competitive online algorithm that utilizes Individual Sickness Indicator (ISI) and Bitrate Restriction Indicator (BRI) to evaluate user cybersickness tendency and network bandwidth efficiency. Moreover, we introduce the Video Loss Indicator (VLI) and Quality Variance Indicator (QVI) to assess video quality loss and quality difference between tiles. We also propose a multi-armed bandit (MAB) algorithm with confidence bound-based reward (video quality) and cost (cybersickness) estimation. The algorithm learns the weighting factor of each user's cost to slow down cybersickness accumulation for users with high cybersickness tendencies. We prove that the algorithm converges to an optimal solution over time. According to simulation with real network settings, our proposed algorithms outperform baselines in terms of video quality and cybersickness accumulation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信