{"title":"Paths Optimization by Jointing Link Management and Channel Estimation Using Variational Autoencoder With Attention for IRS-MIMO Systems","authors":"Meng-Hsun Wu;Hong-Yunn Chen;Ta-Wei Yang;Chih-Chuan Hsu;Chih-Wei Huang;Cheng-Fu Chou","doi":"10.1109/TMLCN.2025.3547689","DOIUrl":null,"url":null,"abstract":"In massive MIMO systems, achieving optimal end-to-end transmission encompasses various aspects such as power control, modulation schemes, path selection, and accurate channel estimation. Nonetheless, optimizing resource allocation remains a significant challenge. In path selection, the direct link is a straightforward link between the transmitter and the receiver. On the other hand, the indirect link involves reflections, diffraction, or scattering, often due to interactions with objects or obstacles. Relying exclusively on one type of link can lead to suboptimal and limited performance. Link management (LM) is emerging as a viable solution, and accurate channel estimation provides essential information to make informed decisions about transmission parameters. In this paper, we study LM and channel estimation that flexibly adjust the transmission ratio of direct and indirect links to improve generalization, using a denoising variational autoencoder with attention modules (DVAE-ATT) to enhance sum rate. Our experiments show significant improvements in IRS-assisted millimeter-wave MIMO systems. Incorporating LM increased the sum rate and reduced MSE by approximately 9%. Variational autoencoders (VAE) outperformed traditional autoencoders in the spatial domain, as confirmed by heatmap analysis. Additionally, our investigation of DVAE-ATT reveals notable differences in the temporal domain with and without attention mechanisms. Finally, we analyze performance across varying numbers of users and ranges. Across various distances—5m, 15m, 25m, and 35m—performance improvements averaged 6%, 11%, 16%, and 22%, respectively.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"381-394"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909334","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909334/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In massive MIMO systems, achieving optimal end-to-end transmission encompasses various aspects such as power control, modulation schemes, path selection, and accurate channel estimation. Nonetheless, optimizing resource allocation remains a significant challenge. In path selection, the direct link is a straightforward link between the transmitter and the receiver. On the other hand, the indirect link involves reflections, diffraction, or scattering, often due to interactions with objects or obstacles. Relying exclusively on one type of link can lead to suboptimal and limited performance. Link management (LM) is emerging as a viable solution, and accurate channel estimation provides essential information to make informed decisions about transmission parameters. In this paper, we study LM and channel estimation that flexibly adjust the transmission ratio of direct and indirect links to improve generalization, using a denoising variational autoencoder with attention modules (DVAE-ATT) to enhance sum rate. Our experiments show significant improvements in IRS-assisted millimeter-wave MIMO systems. Incorporating LM increased the sum rate and reduced MSE by approximately 9%. Variational autoencoders (VAE) outperformed traditional autoencoders in the spatial domain, as confirmed by heatmap analysis. Additionally, our investigation of DVAE-ATT reveals notable differences in the temporal domain with and without attention mechanisms. Finally, we analyze performance across varying numbers of users and ranges. Across various distances—5m, 15m, 25m, and 35m—performance improvements averaged 6%, 11%, 16%, and 22%, respectively.