Paths Optimization by Jointing Link Management and Channel Estimation Using Variational Autoencoder With Attention for IRS-MIMO Systems

Meng-Hsun Wu;Hong-Yunn Chen;Ta-Wei Yang;Chih-Chuan Hsu;Chih-Wei Huang;Cheng-Fu Chou
{"title":"Paths Optimization by Jointing Link Management and Channel Estimation Using Variational Autoencoder With Attention for IRS-MIMO Systems","authors":"Meng-Hsun Wu;Hong-Yunn Chen;Ta-Wei Yang;Chih-Chuan Hsu;Chih-Wei Huang;Cheng-Fu Chou","doi":"10.1109/TMLCN.2025.3547689","DOIUrl":null,"url":null,"abstract":"In massive MIMO systems, achieving optimal end-to-end transmission encompasses various aspects such as power control, modulation schemes, path selection, and accurate channel estimation. Nonetheless, optimizing resource allocation remains a significant challenge. In path selection, the direct link is a straightforward link between the transmitter and the receiver. On the other hand, the indirect link involves reflections, diffraction, or scattering, often due to interactions with objects or obstacles. Relying exclusively on one type of link can lead to suboptimal and limited performance. Link management (LM) is emerging as a viable solution, and accurate channel estimation provides essential information to make informed decisions about transmission parameters. In this paper, we study LM and channel estimation that flexibly adjust the transmission ratio of direct and indirect links to improve generalization, using a denoising variational autoencoder with attention modules (DVAE-ATT) to enhance sum rate. Our experiments show significant improvements in IRS-assisted millimeter-wave MIMO systems. Incorporating LM increased the sum rate and reduced MSE by approximately 9%. Variational autoencoders (VAE) outperformed traditional autoencoders in the spatial domain, as confirmed by heatmap analysis. Additionally, our investigation of DVAE-ATT reveals notable differences in the temporal domain with and without attention mechanisms. Finally, we analyze performance across varying numbers of users and ranges. Across various distances—5m, 15m, 25m, and 35m—performance improvements averaged 6%, 11%, 16%, and 22%, respectively.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"381-394"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909334","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909334/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In massive MIMO systems, achieving optimal end-to-end transmission encompasses various aspects such as power control, modulation schemes, path selection, and accurate channel estimation. Nonetheless, optimizing resource allocation remains a significant challenge. In path selection, the direct link is a straightforward link between the transmitter and the receiver. On the other hand, the indirect link involves reflections, diffraction, or scattering, often due to interactions with objects or obstacles. Relying exclusively on one type of link can lead to suboptimal and limited performance. Link management (LM) is emerging as a viable solution, and accurate channel estimation provides essential information to make informed decisions about transmission parameters. In this paper, we study LM and channel estimation that flexibly adjust the transmission ratio of direct and indirect links to improve generalization, using a denoising variational autoencoder with attention modules (DVAE-ATT) to enhance sum rate. Our experiments show significant improvements in IRS-assisted millimeter-wave MIMO systems. Incorporating LM increased the sum rate and reduced MSE by approximately 9%. Variational autoencoders (VAE) outperformed traditional autoencoders in the spatial domain, as confirmed by heatmap analysis. Additionally, our investigation of DVAE-ATT reveals notable differences in the temporal domain with and without attention mechanisms. Finally, we analyze performance across varying numbers of users and ranges. Across various distances—5m, 15m, 25m, and 35m—performance improvements averaged 6%, 11%, 16%, and 22%, respectively.
关注IRS-MIMO系统的变分自编码器结合链路管理和信道估计的路径优化
在大规模MIMO系统中,实现最佳端到端传输包括功率控制、调制方案、路径选择和准确的信道估计等各个方面。尽管如此,优化资源分配仍然是一个重大挑战。在路径选择中,直接链路是发射器和接收器之间的直接链路。另一方面,间接联系涉及反射、衍射或散射,通常是由于与物体或障碍物的相互作用。完全依赖于一种类型的链接可能导致次优和有限的性能。链路管理(LM)正在成为一种可行的解决方案,准确的信道估计为做出有关传输参数的明智决策提供了必要的信息。在本文中,我们研究了LM和信道估计,灵活调整直接和间接链路的传输率来提高泛化,使用带有注意模块的去噪变分自编码器(DVAE-ATT)来提高和率。我们的实验显示了irs辅助毫米波MIMO系统的显著改进。合并LM提高了总和率,并将MSE降低了约9%。热力图分析证实了变分自编码器(VAE)在空间域上优于传统的自编码器。此外,我们对DVAE-ATT的调查显示,在有和没有注意机制的情况下,颞域存在显著差异。最后,我们分析不同数量的用户和范围的性能。在不同距离(5m、15m、25m和35m)上,性能提升的平均幅度分别为6%、11%、16%和22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信