{"title":"High-Efficiency PET Degradation With a Duo-Enzyme System Immobilized on Magnetic Nanoparticles","authors":"Siddhi Kotnis, Siddhant Gulati, Qing Sun","doi":"10.1002/bit.28963","DOIUrl":null,"url":null,"abstract":"The widespread consumption of PET worldwide has necessitated the search for environment-friendly methods for PET degradation and recycling. Among these methods, biodegradation stands out as a promising approach for recycling PET. The discovery of duo enzyme system PETase and MHETase in 2016, along with their engineered variants, has demonstrated significant potential in breaking down PET. Previous studies have also demonstrated that the activity of the enzyme PETase increases when it is immobilized on nanoparticles. To achieve highly efficient and complete PET depolymerization, we immobilized both FAST-PETase and MHETase at a specific ratio on magnetic nanoparticles. This immobilization resulted in a 2.5-fold increase in product release compared with free enzymes. Additionally, we achieved reusability and enhanced stability of the enzyme bioconjugates.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"49 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28963","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread consumption of PET worldwide has necessitated the search for environment-friendly methods for PET degradation and recycling. Among these methods, biodegradation stands out as a promising approach for recycling PET. The discovery of duo enzyme system PETase and MHETase in 2016, along with their engineered variants, has demonstrated significant potential in breaking down PET. Previous studies have also demonstrated that the activity of the enzyme PETase increases when it is immobilized on nanoparticles. To achieve highly efficient and complete PET depolymerization, we immobilized both FAST-PETase and MHETase at a specific ratio on magnetic nanoparticles. This immobilization resulted in a 2.5-fold increase in product release compared with free enzymes. Additionally, we achieved reusability and enhanced stability of the enzyme bioconjugates.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.