Piecewise Linear Interpolation of Noise in Finite Element Approximations of Parabolic SPDEs

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Gabriel J. Lord, Andreas Petersson
{"title":"Piecewise Linear Interpolation of Noise in Finite Element Approximations of Parabolic SPDEs","authors":"Gabriel J. Lord, Andreas Petersson","doi":"10.1137/23m1574117","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 542-563, April 2025. <br/> Abstract. Efficient simulation of stochastic partial differential equations (SPDEs) on general domains requires noise discretization. This paper employs piecewise linear interpolation of noise in a fully discrete finite element approximation of a semilinear stochastic reaction-advection-diffusion equation on a convex polyhedral domain. The Gaussian noise is white in time, spatially correlated, and modeled as a standard cylindrical Wiener process on a reproducing kernel Hilbert space. This paper provides the first rigorous analysis of the resulting noise discretization error for a general spatial covariance kernel. The kernel is assumed to be defined on a larger regular domain, allowing for sampling by the circulant embedding method. The error bound under mild kernel assumptions requires nontrivial techniques like Hilbert–Schmidt bounds on products of finite element interpolants, entropy numbers of fractional Sobolev space embeddings, and an error bound for interpolants in fractional Sobolev norms. Examples with kernels encountered in applications are illustrated in numerical simulations using the FEniCS finite element software. Key findings include the following: noise interpolation does not introduce additional errors for Matérn kernels in [math]; there exist kernels that yield dominant interpolation errors; and generating noise on a coarser mesh does not always compromise accuracy.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"68 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1574117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 542-563, April 2025.
Abstract. Efficient simulation of stochastic partial differential equations (SPDEs) on general domains requires noise discretization. This paper employs piecewise linear interpolation of noise in a fully discrete finite element approximation of a semilinear stochastic reaction-advection-diffusion equation on a convex polyhedral domain. The Gaussian noise is white in time, spatially correlated, and modeled as a standard cylindrical Wiener process on a reproducing kernel Hilbert space. This paper provides the first rigorous analysis of the resulting noise discretization error for a general spatial covariance kernel. The kernel is assumed to be defined on a larger regular domain, allowing for sampling by the circulant embedding method. The error bound under mild kernel assumptions requires nontrivial techniques like Hilbert–Schmidt bounds on products of finite element interpolants, entropy numbers of fractional Sobolev space embeddings, and an error bound for interpolants in fractional Sobolev norms. Examples with kernels encountered in applications are illustrated in numerical simulations using the FEniCS finite element software. Key findings include the following: noise interpolation does not introduce additional errors for Matérn kernels in [math]; there exist kernels that yield dominant interpolation errors; and generating noise on a coarser mesh does not always compromise accuracy.
抛物型spde有限元逼近中噪声的分段线性插值
SIAM数值分析杂志,第63卷,第2期,第542-563页,2025年4月。摘要。一般域上的随机偏微分方程的有效模拟需要对噪声进行离散化。本文对凸多面体上半线性随机反应-平流-扩散方程的全离散有限元逼近,采用了噪声分段线性插值方法。高斯噪声在时间上是白色的,空间上是相关的,并在再现核希尔伯特空间上建模为标准的圆柱形维纳过程。本文首次对一般空间协方差核的噪声离散误差进行了严格的分析。假设核在更大的正则域上定义,允许循环嵌入方法进行采样。温和核假设下的误差界需要一些非平凡的技术,如有限元插值积的Hilbert-Schmidt界,分数Sobolev空间嵌入的熵数,分数Sobolev范数内插的误差界。利用FEniCS有限元软件对应用中遇到的核问题进行了数值模拟。主要发现包括:在[math]中,噪声插值不会给mat核引入额外的误差;存在产生显性插值误差的核;在粗糙的网格上产生噪声并不总是会影响精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信