An overview of utilizing artificial intelligence in localized prostate cancer imaging.

Expert review of medical devices Pub Date : 2025-04-01 Epub Date: 2025-03-19 DOI:10.1080/17434440.2025.2477601
Emma Stevenson, Omer Tarik Esengur, Haoyue Zhang, Benjamin D Simon, Stephanie A Harmon, Baris Turkbey
{"title":"An overview of utilizing artificial intelligence in localized prostate cancer imaging.","authors":"Emma Stevenson, Omer Tarik Esengur, Haoyue Zhang, Benjamin D Simon, Stephanie A Harmon, Baris Turkbey","doi":"10.1080/17434440.2025.2477601","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Prostate cancer (PCa) is a leading cause of cancer-related deaths among men, and accurate diagnosis is critical for effective management. Multiparametric MRI (mpMRI) has become an essential tool in PCa diagnosis due to its superior spatial resolution which enables detailed anatomical, functional information and its resultant ability to detect clinically significant PCa. However, challenges such as subjective interpretation methods and high inter-reader variability remain. In recent years, artificial intelligence (AI) has emerged as a promising solution to enhance the diagnostic performance of mpMRI by automating key tasks such as prostate segmentation, lesion detection, classification.</p><p><strong>Areas covered: </strong>This review provides a comprehensive overview of the current AI applications in prostate mpMRI, discussing advancements in automated image analysis and how AI-driven models are developed to improve detection and risk stratification. A literature search was conducted to examine both machine learning and deep learning techniques applied in this field, highlighting key studies and future directions.</p><p><strong>Expert opinion: </strong>While AI models have shown significant promise, their clinical integration remains limited due to the need for larger, multi-institutional validation studies. As AI continues to evolve, multimodal approaches combining imaging with clinical data are likely to play pivotal role in personalized PCa diagnosis, treatment planning.</p>","PeriodicalId":94006,"journal":{"name":"Expert review of medical devices","volume":" ","pages":"293-310"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of medical devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17434440.2025.2477601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Prostate cancer (PCa) is a leading cause of cancer-related deaths among men, and accurate diagnosis is critical for effective management. Multiparametric MRI (mpMRI) has become an essential tool in PCa diagnosis due to its superior spatial resolution which enables detailed anatomical, functional information and its resultant ability to detect clinically significant PCa. However, challenges such as subjective interpretation methods and high inter-reader variability remain. In recent years, artificial intelligence (AI) has emerged as a promising solution to enhance the diagnostic performance of mpMRI by automating key tasks such as prostate segmentation, lesion detection, classification.

Areas covered: This review provides a comprehensive overview of the current AI applications in prostate mpMRI, discussing advancements in automated image analysis and how AI-driven models are developed to improve detection and risk stratification. A literature search was conducted to examine both machine learning and deep learning techniques applied in this field, highlighting key studies and future directions.

Expert opinion: While AI models have shown significant promise, their clinical integration remains limited due to the need for larger, multi-institutional validation studies. As AI continues to evolve, multimodal approaches combining imaging with clinical data are likely to play pivotal role in personalized PCa diagnosis, treatment planning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信