Exploring the therapeutic effect of melatonin targeting common biomarkers in testicular germ cell tumor, prostate adenocarcinoma, and male infertility: an integrated biology approach.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Uddesh Ramesh Wanjari, Abilash Valsala Gopalakrishnan
{"title":"Exploring the therapeutic effect of melatonin targeting common biomarkers in testicular germ cell tumor, prostate adenocarcinoma, and male infertility: an integrated biology approach.","authors":"Uddesh Ramesh Wanjari, Abilash Valsala Gopalakrishnan","doi":"10.1007/s00335-025-10119-x","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, male infertility (MI) is a major concern. Several other comorbidities related to MI are testicular germ cell tumor (TGCT) and prostate adenocarcinoma (PRAD). This study focuses on finding the common biomarkers among these diseases and their interaction with Melatonin (MLT). The differential expressed genes were retrieved using the GEPIA2 database for TGCT and PRAD, whereas the DISGENET database for MI-related genes. InteractiVenn was performed in response to identify the common genes. The STAG3, RNF212, DDX3Y, DPY19L2, TPCN1, KLK3, GNRH1, DMD, CCDC146, and DNAH1 are found to be involved in all these diseases. The gene ontologies and pathway enrichment analysis were done for these significant genes in response to identifying and accessing the involvement of these genes in other processes. MLT is a neuroendocrine hormone with high therapeutic properties. MLT showed the best binding energy with DDX3Y among all the proteins. Molecular dynamic simulation (MDS) of MLT with DDX3Y was performed and found to be -52.382 ± 13.110 kJ/mol binding energy. The RMSD, RMSF, SASA, RG, H-bond, FEL, PCA, and MM-PBSA analysis confirm the stability and compactness of the DDX3Y-MLT complex. The MDS results indicate that MLT is a promising therapeutic option for enhancing DDX3Y expression, which will support spermatogenesis. Additionally, the hub genes were identified based on MCC parameters from the merged interactive network of common genes in response to finding significant genes that can be a potential biomarker for the diagnosis of diseases.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10119-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, male infertility (MI) is a major concern. Several other comorbidities related to MI are testicular germ cell tumor (TGCT) and prostate adenocarcinoma (PRAD). This study focuses on finding the common biomarkers among these diseases and their interaction with Melatonin (MLT). The differential expressed genes were retrieved using the GEPIA2 database for TGCT and PRAD, whereas the DISGENET database for MI-related genes. InteractiVenn was performed in response to identify the common genes. The STAG3, RNF212, DDX3Y, DPY19L2, TPCN1, KLK3, GNRH1, DMD, CCDC146, and DNAH1 are found to be involved in all these diseases. The gene ontologies and pathway enrichment analysis were done for these significant genes in response to identifying and accessing the involvement of these genes in other processes. MLT is a neuroendocrine hormone with high therapeutic properties. MLT showed the best binding energy with DDX3Y among all the proteins. Molecular dynamic simulation (MDS) of MLT with DDX3Y was performed and found to be -52.382 ± 13.110 kJ/mol binding energy. The RMSD, RMSF, SASA, RG, H-bond, FEL, PCA, and MM-PBSA analysis confirm the stability and compactness of the DDX3Y-MLT complex. The MDS results indicate that MLT is a promising therapeutic option for enhancing DDX3Y expression, which will support spermatogenesis. Additionally, the hub genes were identified based on MCC parameters from the merged interactive network of common genes in response to finding significant genes that can be a potential biomarker for the diagnosis of diseases.

在全球范围内,男性不育症(MI)是一个备受关注的问题。与男性不育症相关的其他几种并发症包括睾丸生殖细胞瘤(TGCT)和前列腺腺癌(PRAD)。本研究的重点是发现这些疾病的共同生物标志物及其与褪黑激素(MLT)的相互作用。对于 TGCT 和 PRAD,使用 GEPIA2 数据库检索差异表达基因,而对于 MI 相关基因,则使用 DISGENET 数据库。为确定共同基因,还进行了 InteractiVenn 分析。发现 STAG3、RNF212、DDX3Y、DPY19L2、TPCN1、KLK3、GNRH1、DMD、CCDC146 和 DNAH1 与所有这些疾病有关。针对这些重要基因进行了基因本体和通路富集分析,以确定和获取这些基因参与其他过程的情况。MLT 是一种具有高度治疗特性的神经内分泌激素。在所有蛋白质中,MLT 与 DDX3Y 的结合能量最高。进行了 MLT 与 DDX3Y 的分子动力学模拟(MDS),发现其结合能为 -52.382 ± 13.110 kJ/mol。RMSD、RMSF、SASA、RG、H-键、FEL、PCA 和 MM-PBSA 分析证实了 DDX3Y-MLT 复合物的稳定性和紧密性。MDS结果表明,MLT是提高DDX3Y表达的一种有前途的治疗选择,它将支持精子发生。此外,为了找到可作为疾病诊断潜在生物标志物的重要基因,研究人员还根据合并的常见基因互动网络中的 MCC 参数确定了枢纽基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信