Prognostic risk modeling of endometrial cancer using programmed cell death-related genes: a comprehensive machine learning approach.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Tianshu Chen, Yuhan Yang, Zhizhong Huang, Feng Pan, Zhendi Xiao, Kunxue Gong, Wenguang Huang, Liu Xu, Xueqin Liu, Caiyun Fang
{"title":"Prognostic risk modeling of endometrial cancer using programmed cell death-related genes: a comprehensive machine learning approach.","authors":"Tianshu Chen, Yuhan Yang, Zhizhong Huang, Feng Pan, Zhendi Xiao, Kunxue Gong, Wenguang Huang, Liu Xu, Xueqin Liu, Caiyun Fang","doi":"10.1007/s12672-025-02039-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endometrial cancer represents a significant health challenge, with rising incidence and complex prognostic challenges. This study aimed to develop a robust predictive model integrating programmed cell death-related genes and advanced machine learning techniques.</p><p><strong>Methods: </strong>Utilizing transcriptomic data from TCGA-UCEC and GSE119041 datasets, we employed a comprehensive approach involving 117 machine learning algorithms. Key methodologies included differential gene expression analysis, weighted gene co-expression network analysis, functional enrichment studies, immune landscape evaluation, and multi-dimensional risk stratification.</p><p><strong>Results: </strong>We identified 10 critical genes (PTGIS, TIMP3, SRPX, SNCA, HIC1, BAK1, STXBP2, TRIB3, RTKN2, E2F1) and constructed a prognostic model with superior predictive performance. The StepCox[forward] + plsRcox algorithm combination demonstrated excellent predictive accuracy (AUC > 0.8). Kaplan-Meier analysis revealed significant survival differences between high- and low-risk groups in both training (HR = 3.37, p < 0.001) and validation cohorts (HR = 2.05, p = 0.021). The model showed strong correlations with clinical characteristics, immune cell infiltration patterns, and potential therapeutic responses.</p><p><strong>Conclusions: </strong>This study presents a novel, comprehensive approach to endometrial cancer prognosis, integrating machine learning and molecular insights to provide a more precise risk stratification tool with potential clinical translation.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"280"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02039-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endometrial cancer represents a significant health challenge, with rising incidence and complex prognostic challenges. This study aimed to develop a robust predictive model integrating programmed cell death-related genes and advanced machine learning techniques.

Methods: Utilizing transcriptomic data from TCGA-UCEC and GSE119041 datasets, we employed a comprehensive approach involving 117 machine learning algorithms. Key methodologies included differential gene expression analysis, weighted gene co-expression network analysis, functional enrichment studies, immune landscape evaluation, and multi-dimensional risk stratification.

Results: We identified 10 critical genes (PTGIS, TIMP3, SRPX, SNCA, HIC1, BAK1, STXBP2, TRIB3, RTKN2, E2F1) and constructed a prognostic model with superior predictive performance. The StepCox[forward] + plsRcox algorithm combination demonstrated excellent predictive accuracy (AUC > 0.8). Kaplan-Meier analysis revealed significant survival differences between high- and low-risk groups in both training (HR = 3.37, p < 0.001) and validation cohorts (HR = 2.05, p = 0.021). The model showed strong correlations with clinical characteristics, immune cell infiltration patterns, and potential therapeutic responses.

Conclusions: This study presents a novel, comprehensive approach to endometrial cancer prognosis, integrating machine learning and molecular insights to provide a more precise risk stratification tool with potential clinical translation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信