Neural-Network-Based Adaptive Control of Time-Delayed Non-Linear Cyber-Physical Systems With Power Uncertainty Against Deception Attacks

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Jiakang Liang, Yadong Yang, Jiyu Zhu, Qikun Shen
{"title":"Neural-Network-Based Adaptive Control of Time-Delayed Non-Linear Cyber-Physical Systems With Power Uncertainty Against Deception Attacks","authors":"Jiakang Liang,&nbsp;Yadong Yang,&nbsp;Jiyu Zhu,&nbsp;Qikun Shen","doi":"10.1002/rnc.7796","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>At this job, the adaptive control problem is investigated for a class of non-linear cyber-physical systems (CPSs), where the CPSs considered are not only subject to deception attacks and time delay, but also contain uncertain input powers. The deception attacks result in the actual values of the system state being unavailable and control gains being unknown. On the basis of the theory of Lyapunov stability, a new adaptive neural-networks-based control scheme is designed to guarantee the stability of the closed-loop system and mitigate the impact of deception attacks. Compared with the existing works in literature, (1) the input powers of the CPSs considered in this article are unknown and new controllers are constructed based on the neural network approximation technique; (2) the influence of unknown time delay is eliminated by using a novel Lyapunov–Krasovskii function. Furthermore, in order to address unknown gains caused by deception attacks, the Nussbaum gain technique is firstly extended to the CPSs with power uncertainties. Finally, the simulation results confirm the effectiveness of the control strategy presented in this work.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 6","pages":"2288-2299"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7796","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

At this job, the adaptive control problem is investigated for a class of non-linear cyber-physical systems (CPSs), where the CPSs considered are not only subject to deception attacks and time delay, but also contain uncertain input powers. The deception attacks result in the actual values of the system state being unavailable and control gains being unknown. On the basis of the theory of Lyapunov stability, a new adaptive neural-networks-based control scheme is designed to guarantee the stability of the closed-loop system and mitigate the impact of deception attacks. Compared with the existing works in literature, (1) the input powers of the CPSs considered in this article are unknown and new controllers are constructed based on the neural network approximation technique; (2) the influence of unknown time delay is eliminated by using a novel Lyapunov–Krasovskii function. Furthermore, in order to address unknown gains caused by deception attacks, the Nussbaum gain technique is firstly extended to the CPSs with power uncertainties. Finally, the simulation results confirm the effectiveness of the control strategy presented in this work.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信