{"title":"Global Distribution and Geological Features of Ilmenite-Rich Sites on the Lunar Surface","authors":"Satoru Yamamoto, Moe Matsuoka, Hiroshi Nagaoka, Makiko Ohtake, Ayame Ikeda","doi":"10.1029/2024JE008663","DOIUrl":null,"url":null,"abstract":"<p>We studied the global distribution and geological features of lunar surface sites whose spectra indicate an ilmenite-rich composition. Hyperspectral data obtained by the Kaguya Spectral Profiler were used for data mining to identify diagnostic features of a 1- and 2-<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>m spectral reflectance of ilmenite, revealing the global distribution of sites showing ilmenite-rich spectra. The results show that regions with ilmenite-rich spectra are concentrated at the margins of impact basins on the lunar nearside, whereas no such regions are identified in the Feldspathic Highland Terrain or the South Pole-Aitken basin. Using multiband images and a digital terrain model obtained by the Kaguya Multiband Imager and Terrain Camera, we examined the geological features of each site showing ilmenite-rich spectra and found that most of the sites are distributed on pyroclastic deposits overlying highland materials. Spectra interpreted as glass-rich material are prevalent in and around areas having ilmenite-rich spectra. However, sites showing ilmenite-rich spectra do not correspond to mare regions with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>TiO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{TiO}}_{2}$</annotation>\n </semantics></math>-rich basalts. These results may indicate that the concentration of ilmenite in pyroclastic deposits is high enough to exhibit diagnostic features of 1- and 2-<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>m spectral reflectance of ilmenite, whereas the concentration in mare regions with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>TiO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{TiO}}_{2}$</annotation>\n </semantics></math>-rich basalt is not. Since pyroclastic deposits are expected to be extensive, deep unconsolidated deposits of relatively block-free debris, resulting in high processing efficiency in the hydrogen reduction processes, our data may be useful for developing an efficient exploration strategy for ilmenite as a lunar resource.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008663","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We studied the global distribution and geological features of lunar surface sites whose spectra indicate an ilmenite-rich composition. Hyperspectral data obtained by the Kaguya Spectral Profiler were used for data mining to identify diagnostic features of a 1- and 2-m spectral reflectance of ilmenite, revealing the global distribution of sites showing ilmenite-rich spectra. The results show that regions with ilmenite-rich spectra are concentrated at the margins of impact basins on the lunar nearside, whereas no such regions are identified in the Feldspathic Highland Terrain or the South Pole-Aitken basin. Using multiband images and a digital terrain model obtained by the Kaguya Multiband Imager and Terrain Camera, we examined the geological features of each site showing ilmenite-rich spectra and found that most of the sites are distributed on pyroclastic deposits overlying highland materials. Spectra interpreted as glass-rich material are prevalent in and around areas having ilmenite-rich spectra. However, sites showing ilmenite-rich spectra do not correspond to mare regions with -rich basalts. These results may indicate that the concentration of ilmenite in pyroclastic deposits is high enough to exhibit diagnostic features of 1- and 2-m spectral reflectance of ilmenite, whereas the concentration in mare regions with -rich basalt is not. Since pyroclastic deposits are expected to be extensive, deep unconsolidated deposits of relatively block-free debris, resulting in high processing efficiency in the hydrogen reduction processes, our data may be useful for developing an efficient exploration strategy for ilmenite as a lunar resource.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.